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New Features in LISREL  

 

Several special features and improvements are available in LISREL. Observed and latent variable names of up to sixteen 
characters are permitted and path diagram files can be exported as enhanced metafiles which can be imported into other 

documents. HTML tables for the various results of single group LISREL models are provided in the form of a HTML file. 

The iterative estimation algorithm for the parameters of LISREL models, which uses adaptive quadrature, has been 

improved. The multilevel generalized linear modeling application includes more link functions and computes estimates of 
the intra-class correlation coefficients.  

 

LISREL also includes several new statistical methods. More specifically, two-stage multiple imputation Structural Equation 
Modeling (SEM) for continuous, ordinal, and a mixture of continuous and ordinal variables, confidence interval estimates 

for the parameters of LISREL models, and standard error estimates and confidence interval estimates for standardized and 

completely standardized solutions are implemented. In addition, an alternative iterative estimation algorithm for the 
parameters of the general LISREL model and the extended LISREL model is available.  

 

The technical details along with illustrative examples for two-stage multiple imputation SEM are provided in section 1. 

Section 2 contains the statistical theory for standard error and confidence interval estimates for the parameters of LISREL 

models and includes an illustrative example. In section 3, the estimation theory for estimating the parameters of single group 

LISREL models with variance constraints for the endogenous latent variables is provided and demonstrated. The Gauss-

Newton algorithm for estimating the parameters of the extended LISREL model is described and illustrated in section 4.  
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1. Two stage multiple imputation SEM 

1.1 Continuous variables 

Moment matrices 

Suppose that the rows of ( )n pX  are 𝑛 observations of 𝑝 continuous variables 
1 2, , , px x x  with mean vector μ  and 

covariance matrix Σ . The sample covariance matrix, S , is an unbiased estimator of Σ  and may be expressed as 

 ( )( )
1

1

1

n

i i

in =

= − −
−
S x x x x   

where ix  and x  denote observation 𝑖 and the sample mean vector of 1 2 px x x
 =  x , respectively. A typical element 

of a consistent estimator, U, of the asymptotic covariance matrix,  , of the sample variances and covariances (Browne 

1984) is given by 

,ij kl ijkl ij klu w w w= −  

where 

 ( )( )( )( )1

1

n

ijkl im i jm j km k lm l

m

w n x x x x x x x x−

=

= − − − −   

and 

 ( )( )1

1

n

ij im i jm j

m

w n x x x x−

=

= − −   

where 

 
1

1

n

i im

m

x n x−

=

=    

The robust ML, DWLS, WLS, and ULS methods can be used to fit structural equation models for continuous variables to the 

sample covariance matrix by using the estimated asymptotic covariance matrix of the sample variances and covariances. 

 

The correlation matrix, P  , of 
1 2, , , px x x  is the covariance matrix of the standardized variables 

1 2, , , pz z z  where 

  
1 1− −=
σ σ

P D ΣD  

and 

 i i
i

i

x
z





−
=   

where σD denotes a diagonal matrix with the standard deviations 
1 2, , , p   of 

1 2, , , px x x on the diagonal. The 

sample correlation matrix, R , is an unbiased estimator of P and may be expressed as 

  
1 1− −=

s s
R D RD  
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where
s

D denotes a diagonal matrix with the sample standard deviations 
1 2, , , ps s s of 

1 2, , , px x x on the diagonal. A 

typical element of a consistent estimator, U , of the asymptotic covariance matrix, , of the sample correlations (Steiger 

and Hakstian 1982) is given by 

( ) ( ) ( ),

1 1 1

4 2 2
ij kl ijkl ij kl iikk jjkk iill jjll ij iikl jjkl kl ijkk ijllu r r r r r r r r r r r r r= + + + + − + − +  

where 

 ( )
1

1

1
n

ijkl im jm km lm

m

r n z z z z
−

=

= −    

and 

( )
1

1

1
n

ij im jm

m

r n z z
−

=

= −   

and 

 im i
im

i

x x
z

s

−
=   

The robust DWLS, WLS, and ULS methods can be used to fit structural equation models for continuous variables to the 

sample correlation matrix by using the estimated asymptotic covariance matrix of the sample correlations. 

 

Multiple imputation 

The MCMC method 

Suppose now that the 𝑛 observations of the 𝑝 continuous variables include missing data values with 𝑘 missing data value 

patterns and that the joint distribution of the variables is a multivariate normal distribution with mean vector μ  and 

covariance matrix Σ . The EM algorithm and the MCMC method for multiple imputation of incomplete data can be used to 

impute the missing data values of the continuous variables. 

 

Suppose that oX  denote the observed data values. The EM algorithm (Dempster, Laird, and Rubin 1977) can be used to 

compute the maximum likelihood estimate of Σ . The minus two observed-data log likelihood may be expressed as 

 ( ) ( )1

1 1 1

2ln ( | ) ln
ink k

o i i oij i i oij i

i i j

L n −

= = =


− = + − − Σ X Σ x μ Σ x μ   

where in  denotes the number of observations of missing data value pattern 1,2, ,i k= , iΣ  denotes the population 

covariance matrix of missing data value pattern 𝑖, iμ  denotes the mean vector of missing data value pattern 𝑖, and 
oijx  is 

the
thj vector of observed values of missing data value pattern 𝑖. 

 

The initial estimate for the M-step is the sample covariance matrix,S , of the complete data or 
pI  if the number of complete 

observations is too small. In the E-step, the conditional covariance matrices of the missing variables given the observed 

variables of the missing data value patterns are computed and used to compute an updated estimate 
( 1)ˆ t+

Σ  of Σ . Iteration 
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of the consecutive M and E steps is terminated when the absolute difference between 
( 1)ˆ t+

Σ  and 
( )ˆ t

Σ  is below the tolerance 

limit   = 10−5. 

 

The EM estimate, Σ̂ , of Σ  is used as the initial covariance matrix of the multivariate normal distribution in the first step 

of the Monte Carlo Markov Chain (MCMC) method. In the first step (P-step) of the MCMC method, an estimate of Σ  is 

simulated from an inverse Wishart distribution. In the I-step, observations are simulated from the conditional normal 

distributions of the missing variables given the observed k  missing data value patterns and used to replace the missing data 

values. The next estimate of Σ  is then obtained by computing the sample covariance matrix of the completed data. The P 

and I steps are repeated for a fixed number of times. 

 

The FCS regression method 

Suppose now that the 𝑛 observations of the 𝑝 continuous variables include missing data values and that a joint (multivariate) 

distribution of the variables exists. In this case, the Fully Conditional Specified (FCS) regression method (Brand 1999; Van 

Buuren 2007) can be used to impute the missing data values. The FCS regression method performs a fixed number of 

imputations to impute the missing data values. Each imputation consists of a filled-in phase and an imputation phase. In the 

filled-in phase, the missing data values are filled-in by using a sequence of regression analyses for the 𝑝 continuous 

variables. These filled-in data are then used as the initial data for the imputation phase in which the missing data values are 

imputed by using a sequence of regression analyses for the 𝑝 continuous variables. These imputed data are then used as the 

initial data for the next iteration of the imputation phase and a fixed number of iterations are executed for each imputation. 

 

The filled-in stage fits the following 𝑝 regression models sequentially to the data, namely 

 

1 10 1

2 20 21 1 2

3 30 31 1 32 2 3

0 1 1 2 2 , 1 1p p p p p p p p

x e

x x e

x x x e

x x x x e



 

  

    − −

= +

= + +

= + + +

= + + + + +

  

where the elements of 10 20 , 1p p   −

 =  β  denote unknown regression weights and 
1 2, , , pe e e  are 𝑝 error variables. 

The first model is fitted to the complete data for 1x . The corresponding estimates are then used to simulate new parameter 

values from the posterior distributions of the parameters which in turn is used to fill-in the missing data values for 1x . The 

second model is then fitted to the complete data for 2x  and the filled-in data for 1x . The final model is fitted to the complete 

data for 
px  and the filled-in data for 

1 2 1, , , .px x x −
 The filled-in data for 

1 2, , , px x x  are used for the first iteration of 

the imputation phase. The simulation of the new parameter values from the posterior distributions of the parameters and the 

imputation of the missing data values for each of the 𝑝 regression models use the same steps as outlined next for each 

iteration of the imputation stage. 

 
For each iteration of the imputation stage, the following regression models are fitted sequentially either to the filled-in data 

or the imputed data, namely 

0 1 1 1 1 1 1j j j j j p p jx x x x x e    − − + += + + + + + + +  
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where 𝑗 = 1, 2, … , 𝑝, the elements of 
0 1 1 1j j j p    − +

 =  β denote 𝑝 unknown regression weights, and 
je  

denotes an error variable with variance 
2

j . The estimated covariance matrix of the estimator ˆ
jβ  of 

jβ  may be expressed 

as 

 ( )
1

2 2

( ) ( )j j j j j 
−

=V X X   

where ( )jX  denotes rows 1,2, , 1, , ,j j p−  of the filled-in or imputed data. New values for the parameters are then 

simulated from their posterior distributions as 

 ( )

2

2

2

ˆ

ˆ

jt j tj hj

j j

tj

n p

c






= +

−
=

β β V z

  

where hjV  denotes the upper triangular matrix in the Cholesky decomposition of j hj hj
=V V V , z denotes a 1p  standard 

normal vector, and 𝑐 is a Chi-square variable with 
jn p−  degrees of freedom. The missing data values are then imputed as 

 ( )ijm jt i j tjx z= +β x   

where 
ijmx  denotes a missing data value in row 𝑖 and column 𝑗 of X, 

( )i jx  denotes row 𝑖 of ( )jX , and 𝑧 is a standard normal 

variable. 

 

Average unstandardized moment matrices 

Suppose that 1 2, , , mX X X  are 𝑚 imputed data sets for the incomplete data matrix, X , of the 𝑝 continuous variables 

1 2, , , px x x  and that 1 2, , , mS S S and 1 2, , , mU U U denote the corresponding sample covariance matrices and the 

estimated asymptotic covariance matrices of the variances and covariances, respectively. Then, the average sample 

covariance matrix is 

 
1

1 m

i

im =

= S S   

and the average estimated asymptotic covariance matrix is 

1

1 m

i

im =

= U U  

Chung and Cai (2019) point out that U only captures uncertainty based on complete data. As a result, its inverse cannot be 

used as a weight matrix for the robust ML, DWLS, WLS, and ULS methods for continuous structural equational modeling. 

A corrected weight matrix is obtained by correcting for the between-imputation variation in the estimated variances and 

covariances and is obtained as the inverse of 

 ( )( )
1

1ˆ
( 1)

m

i i

i

m

m m =

+  = + − − −  
U s s s s   
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where s denotes the ( )1 / 2p p +  vector consisting of the nonduplicated elements of the p p symmetric matrixS . S  and 

̂ can be used to fit structural equation models to the average sample covariance matrix with the robust ML, DWLS, WLS, 

and ULS methods. The corrected robust DWLS and ULS Chi-square test statistic proposed by Chung and Cai (2019) is given 

by 

 ˆ ˆ( 1)( ( )) ( ( ))BT n = − − −s σ θ V s σ θ  

where 

 
1 1 1 1ˆ ˆ ˆ ˆˆ ˆ ˆ( )− − − − = −V Δ ΔΔ Δ    

where Δ̂ denotes the Jacobian matrix of ( )σ θ with respect to the unknown parameters θ of the structural equation model 

evaluated at ˆ.=θ θ  The small sample adjusted BT  test statistic (Yuan and Bentler 1997) is given by 

 .
1 / ( 1)

B
YB

B

T
T

nT n
=

+ −
  

 

Average standardized moment matrices 

Suppose that 1 2, , , mX X X  are 𝑚 imputed data sets for the incomplete data matrix, X , of the 𝑝 continuous variables 

1 2, , , px x x  and that 1 2, , , mR R R and 1 2, , , mU U U denote the corresponding sample correlation matrices and the 

estimated asymptotic covariance matrices of the sample correlations, respectively. Then, the average sample correlation 

matrix is 

 
1

1 m

i

im =

= R R   

and the average estimated asymptotic covariance matrix is 

1

1 m

i

im =

= U U  

Chung and Cai (2019) point out that U only captures uncertainty based on complete data. As a result, its inverse cannot be 

used as a weight matrix for the robust DWLS, WLS, and ULS methods for continuous structural equational modeling for 

correlation matrices. A corrected weight matrix is obtained by correcting for the between-imputation variation in the 

estimated correlations and is obtained as the inverse of 

 ( )( )
1

1ˆ
( 1)

m

i i

i

m

m m =

+  = + − − −  
U r r r r   

where r denotes the ( )1 / 2p p −  vector consisting of the nondiagonal and the nonduplicated elements of the p p  

symmetric matrix R . R  and ̂ can be used to fit structural equation models to the average sample correlation matrix with 

the robust DWLS, WLS, and ULS methods. The corrected robust DWLS and ULS Chi-square test statistic proposed by Chung 

and Cai (2019) is given by 

 ˆ ˆ( 1)( ( )) ( ( ))BT n = − − −r ρ θ V r ρ θ   
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where 

 
1 1 1 1ˆ ˆ ˆ ˆˆ ˆ ˆ( )− − − − = −V Δ ΔΔ Δ    

where Δ̂ denotes the Jacobian matrix of ( )ρ θ with respect to the unknown parameters θ of the structural equation model 

evaluated at ˆ.=θ θ  The small sample adjusted BT  test statistic (Yuan and Bentler 1997) is given by 

 
1 / ( 1)

B
YB

B

T
T

nT n
=

+ −
 

 

1.2 Ordinal variables 

Polychoric Correlations 

Suppose that the rows of ( )n pX  are 𝑛 observations of 𝑝 ordinal variables 
1 2, , , px x x with 

1 2, , , pm m m categories, 

respectively. Suppose further that these 𝑝 ordinal variables are the result of the discretization of the underlying 𝑝 continuous 

standard normal variables 
1 2, , , pz z z as such that 

1 2 ( , )pz z z N
 =  z 0 P  and 

 

0 1

1 2

, 1 ,

1 if

2 if

if
i i

i i i i

i i i i

i i i m i i m

x z

x z

x m z

 

 

 −

=  


=  


 =  

  

where P denotes the population correlation matrix of z and 
0 1 2 , ii i i i m   − =    = are parameters known as 

thresholds. The model for the univariate marginal of variable ix  is 

 
,

, 1

( )
i

i k
ik u du




 

−

=    

where (.)  denotes the probability density function of the standard normal distribution. The maximum likelihood estimator 

of ik  (Jöreskog, 1994) is given by  

 
1

1 2( )ik i i ikp p p −= + + +   

where 
1(.)−  denotes the inverse of the cumulative distribution function of the standard normal distribution and 

1 2, , ,
ii i imp p p denote the marginal sample proportions for ix .  

The polychoric correlation matrix, R, is a consistent estimator of the population correlation matrix P. The model for the 

bivariate marginal of variables ix  and 
jx  is 

 
,

, 1 , 1
2 ( , , )

i il

i k i l
ijkl iju v dudv

 

 
  

− −

=     

where 
2( , , )iju v  denotes the probability density function of the bivariate standard normal distribution with correlation 

ij . The maximization of the bivariate likelihood function is equivalent to minimization of the discrepancy function 
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 ( )    ( )
1 1

ˆ ˆ, , ln ln
ji

mm

ij i j ijkl ijkl ijkl

k l

F p p 
= =

= −τ τ   

where ˆ
iτ  and ˆ

jτ  denote the maximum likelihood estimators of the 1im −  and 1jm −  thresholds of variables ix  and 
jx , 

respectively and 
ijklp  is the sample proportion for ix k=  and 

jx l= . The gradient of ( )F   (Olsson 1979) may be expressed 

as 

 ( )
1 1

ˆ ˆ, ,
ji

mm
ijkl ijkl

ij i j

k l ijkl ij

p
g




 = =

 
= −  

  
τ τ   

where (Olsson 1979)  

 ( ) ( ) ( ) ( )2 2 , 1 2 , , 1 2 , 1 , 1, , , ,
ijkl

ik il i k jl i k j l i k j l

ij


           


− − − −


= − − +


  

where ( )2   denotes the density function of the bivariate standard normal distribution with correlation
ij . The information 

(Jöreskog, 1994) is given by 

 ( )
1

ˆ ˆ, ,
ijkl ijkl

ij i j

ij ijkl ij

i
 


  

    
=    

       

τ τ   

The Fisher scoring algorithm is used to minimize ( )F   with respect to 
ij . Let

ij = . If 
( )ˆ t  denotes the 𝑡𝑡ℎ successive 

approximation to ̂ , then the ( 1)stt +  approximation is obtained from 

 
( )
( )

( 1) ( )
ˆ ˆ, ,

ˆ ˆ
ˆ ˆ, ,

ij i jt t

ij i j

g

i


 



+ = −
τ τ

τ τ
  

Iteration is terminated when the absolute gradient value is below the tolerance limit  = 10−3.  

 

The asymptotic covariance matrix,  , of the 
* ( 1) / 2p p p= −  polychoric correlations is a 

* *( 1) / 2p p +  matrix. A typical 

element of ̂  (Jöreskog, 1994) may be expressed as 

 ,

1

ˆ ˆ ˆ ˆ ˆ[ ]
n

ij rs cijrs ijkl rsno ij kl

c

    
=

= −   

where 
1

cijrs
n

 =  if cix k= , 
cjx l= , crx n= , and csx o=  and 0 otherwise, 

1 1

i jm m

ij ijkl ijklk l
  

= =
=  , 

1 1

i jm m

rs rsno rsnon o
  

= =
=  , and 

ijkl  denotes a typical element of 

 ij ij i i j i j j
  = + +Γ α B β 1 1 β B   

where 
i1  denotes an 1im   column vector and 
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( )

( )

1
1 1

1
1 1

i i

i j

i i i i

j j j j

 

 

−
− −

−
− −

  =

  =

B A D A A D

B A D A A D

 

where iA  denotes the ( )1i im m −  matrix given by 

 

( )

( ) ( )

( )

1

1 2

1.

0 0

0

0 0 0
i

k

k k

i

m k

 

   

  −

 
 
− 

=  
 

−  

A   

Typical elements of 
ijα , iβ , and 

jβ  are given by 

  

1

1 1

1 1

1

ji

ji

ijkl

ijkl

ijkl ij

mm
ijkl

i ijklk
k l ik

mm
ijkl

j ijkll
k l il

D



 











−

= =

= =


=



 
=  

 

 
  =     





β

β

  

where 

 

2

1 1

1
.

ji
mm

ijkl

k l ijkl ij

D


 = =

 
=    
   

The robust DWLS, WLS, or ULS methods can be used to fit structural equation models for ordinal variables to the polychoric 

correlation matrix by using the estimated asymptotic covariance matrix of the polychoric correlations (Chung and Cai 

(2019)). 

 

Multiple Imputation 

The MCMC method 

Suppose now that the 𝑛 observations of the p ordinal variables include missing data values with 𝑘 missing data value 

patterns. The EM algorithm and the MCMC method for multiple imputation of incomplete data are intended for continuous 

variables and cannot readily be applied to ordinal variables. However, they can be applied to the underlying continuous 

variables 
1 2, , , pz z z associated with the ordinal variables 

1 2, , , .px x x Although no observations for these continuous 

variables are available, these variables are assumed to have a multivariate standard normal distribution with a population 

covariance matrix Σ . As a result, we can simulate data from this distribution by using the polychoric correlation matrix of 

the complete data of the variables if the number of complete cases is large enough and use either the EM algorithm or the 

MCMC algorithm to impute the missing data values for the underlying continuous variables. After imputation, the estimated 

thresholds can be used to replace the missing data values for the corresponding ordinal variables by using the relationship 

between the ordinal variables, the underlying continuous variables, and the thresholds. 
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Suppose that the rows of ( )n pZ  are 𝑛 observations of the 𝑝 underlying continuous variables 
1 2, , , pz z z simulated 

from the ( , )N 0 Σ  distribution and that oZ  denotes the observed data values that corresponds with the observed data values 

of X. The EM algorithm (Dempster, Laird, and Rubin 1977) can be used to compute the maximum likelihood estimate of 

Σ . The minus two observed-data log likelihood may be expressed as 

1

1 1 1

2ln ( | ) ln
ink k

o i i oij i oij

i i j

L n −

= = =

− = + Σ Z Σ z Σ z  

where in  denotes the number of observations of missing data value pattern 𝑖 = 1,2, ⋯ , 𝑘, iΣ  denotes the population 

covariance matrix for missing data value pattern 𝑖, and oijz is the 𝑗𝑡ℎ vector of observed values of missing data value pattern 

𝑖. 

 

The initial estimate for the M-step is the sample covariance matrix, S , of the complete data or 
pI  if the number of complete 

observations is too small. In the E-step, the conditional covariance matrices of the missing variables given the observed 

variables for the missing data value patterns are computed and used to compute an updated estimate,
( 1)ˆ t+

Σ  of Σ . Iteration 

of the consecutive M and E steps is terminated when the absolute difference between 
( 1)ˆ t+

Σ  and 
( )ˆ t

Σ  is below the tolerance 

limit   = 10−5. 

 

The correlation matrix of the EM estimate, Σ̂ , of Σ  is used as the initial covariance matrix of the multivariate standard 

normal distribution in the first step of the Monte Carlo Markov Chain (MCMC) method. In the first step (P-step) of the 

MCMC method, an estimate of Σ  is simulated form an inverse Wishart distribution. In the I-step, observations are simulated 

from the conditional standard normal distributions of the missing variables given the observed 𝑘 missing data value patterns 

and used to replace the missing data values. The next estimate of Σ  is then obtained by computing the sample correlation 

matrix of the completed data. The P and I steps are repeated for a fixed number of times. 

 

Let the rows of : ( )i n pZ  contain the observed and the imputed data values for the standard normal variables 

1 2, , , pz z z . The observed data for the ordinal variables are obtained from the corresponding observed data values of X. 

The missing data values of X are then replaced by the values obtained from the corresponding imputed data values of Z and 

the estimated thresholds by using the relationship between the ordinal variables, the underlying continuous variables, and 

the thresholds. 

 

The FCS ordinal logistic regression method 

Suppose now that the 𝑛 observations of the 𝑝 ordinal variables include missing data values and that a joint (multivariate) 

distribution of the variables exists. In this case, the Fully Conditional Specified (FCS) ordinal logistic regression method 

(Brand 1999; Van Buuren 2007) can be used to impute the missing data values. The FCS ordinal logistic regression method 

performs a fixed number of imputations to impute the missing data values. Each imputation consists of a filled-in phase and 

an imputation phase. In the filled-in phase, the missing data values are filled-in by using a sequence of ordinal logistic 

regression analyses for the 𝑝 ordinal variables. These filled-in data are then used as the initial data for the imputation phase 

in which the missing data values are imputed by using a sequence of ordinal logistic regression analyses for the 𝑝 ordinal 

variables. These imputed data are then used as the initial data for the next iteration of the imputation phase and a fixed 

number of iterations are executed for each imputation. 
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The filled-in stage fits the following 𝑝 ordinal logistic regression models sequentially to the data, namely 

 

1 1

2 2 21 1

3 3 31 1 32 2

1 1 2 2 , 1 1

logit( )

logit( )

logit( )

logit( )

k k

k k

k k

pk pk p p p p p

x

x x

x x x

 

  

   

     − −

=

= +

= + +

= + + + +

  

where 
1 2 1( | , , , )ijk j jP x k x x x −=  , logit( ) ln( ) ln( )

jjk jk im  = − , and the elements of 

11 12 21 , 1p p    −

 =  γ  denote unknown regression weights. The first model is fitted to the complete data for 1x . 

The corresponding estimates are then used to simulate new parameter values from the posterior distribution of the 

parameters which in turn is used to fill-in the missing data values for 1x . The second model is then fitted to the complete 

data for 2x  and the filled-in data for 1x . The final model is fitted to the complete data for 
px  and the filled-in data for 

1 2 1, , , px x x −
. The filled-in data for 

1 2, , , px x x  are used for the first iteration of the imputation phase. The simulation 

of the new parameter values from the posterior distribution of the parameters and the imputation of the missing data values 

for each of the p ordinal logistic regression models use the same steps as outlined next for each iteration of the imputation 

stage. 

 

For each iteration of the imputation stage, the following ordinal logistic regression models are fitted sequentially either to 

the filled-in data or the imputed data, namely 

 
1 1 1 1 1 1logit( )ijk k j j j j p px x x x     − − + += + + + + + +   

where 
1 1 1( | , , , , )ijk j j j pP x k x x x x − +=  , logit( ) ln( ) ln( )

jjk jk im  = − , the elements of 

1 2 1 1 1 1ij m j j p      − − +

 =  γ  denote 1jp m+ −  unknown regression weights, 1,2,...,j p= , and 

1,2,..., 1jk m= − . Let 
jV  denote the estimated covariance matrix of the estimator ̂  of 

jγ .  

 

New values for the parameters are then simulated from their posterior distribution as 

ˆ
jt j hj = +γ V z  

where 
'

hjV  denotes the upper triangular matrix in the Cholesky decomposition of j hj hj
=V V V , and z is a ( 1) 1jp m+ −   

standard normal vector. These new parameter values are then used to compute the predicted cumulative probability ˆ
jk  for 

1,2,..., 1jk m= − . A random uniform variable, u , between 0 and 1 is simulated and the missing data values for 
jx  are 

imputed as 1 if 
1

ˆ
ju  , as 𝑘 if 

, 1
ˆ ˆ

j k jku −   , and as 
jm  if .

ˆ
jjmu   

 

Average moment matrices 

Suppose that 1 2, , , mX X X  are 𝑚 imputed data sets for the incomplete data matrix, X , of the 𝑝 ordinal variables 

1 2, , , px x x  and that 1 2, , , mR R R and 1 2, , , mU U U denote the corresponding polychoric correlation matrices and 
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the estimated asymptotic covariance matrices of the polychoric correlations, respectively. Then, the average polychoric 

correlation matrix is 

1

1 m

i

im =

= R R  

and the average estimated asymptotic covariance matrix is 

1

1 m

i

im =

= U U  

Chung and Cai (2019) point out that U only captures uncertainty based on complete data. As a result, its inverse cannot be 

used as a weight matrix for the robust DWLS, WLS, and ULS methods for ordinal structural equational modeling. A corrected 

weight matrix is obtained by correcting for the between-imputation variation in the estimated polychoric correlations and is 

obtained as the inverse of 

( )( )
1

1ˆ
( 1)

m

i i

i

m

m m =

+  = + − − −  
U r r r r  

where r denotes the 𝑝 × (𝑝 − 1)/2 vector consisting of the nondiagonal and nonduplicated elements of the 𝑝 × 𝑝 symmetric 

matrix R. R and ̂  can be used to fit structural equation models to the average polychoric correlation matrix with the 

robust DWLS, WLS, and ULS methods. The corrected robust DWLS and ULS Chi-square test statistic proposed by Chung 

and Cai (2019) is given by 

( 1)( ( )) ( ( ))BT n = − − −r ρ θ V r ρ θ  

where 

1 1 1 1ˆ ˆ ˆ ˆˆ ˆ ˆ( )− − − − = −V Δ ΔΔ Δ    

where Δ̂ denotes the Jacobian matrix of ( )ρ θ  with respect to the unknown parameters, θ , of the structural equation model 

evaluated at .=θ θ  The small sample adjusted BT  test statistic (Yuan and Bentler 1997) is given by 

1 / ( 1)

B
YB

B

T
T

nT n
=

+ −
 

 

1.3 Mixed variables 

Correlations 

Polychoric correlations 

Suppose that the rows of ( )n pX  are 𝑛 observations of 𝑝 ordinal variables 
1 2, , , px x x with 

1 2, , , pm m m categories, 

respectively. Suppose further that these 𝑝 ordinal variables are the result of the discretization of the underlying 𝑝 continuous 

standard normal variables 
1 2, , , pz z z as such that 

1 2 ( , )pz z z N
 =  z 0 P  and 
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0 1

1 2

, 1 ,

1 if

2 if

if
i i

i i i i

i i i i

i i i m i i m

x z

x z

x m z

 

 

 −

=  


=  


 =  

  

where P denotes the population correlation matrix of z and 
0 1 2 , ii i i i m   − =    = are parameters known as 

thresholds. The model for the univariate marginal of variable ix  is 

 
,

, 1

( )
i

i k
ik u du




 

−

=    

where (.)  denotes the probability density function of the standard normal distribution. The maximum likelihood estimator 

of ik  (Jöreskog, 1994) is given by  

 
1

1 2
ˆ ( )ik i i ikp p p −= + + +   

where 
1(.)−  denotes the inverse of the cumulative distribution function of the standard normal distribution and 

1 2, , ,
ii i imp p p denote the marginal sample proportions for ix .  

The polychoric correlation matrix, R, is a consistent estimator of the population correlation matrix P. The model for the 

bivariate marginal of variables ix  and 
jx  is 

 
,

, 1 , 1
2 ( , , )

i il

i k i l
ijkl iju v dudv

 

 
  

− −

=     

where 
2( , , )iju v  denotes the probability density function of the bivariate standard normal distribution with correlation 

ij . The maximization of the bivariate likelihood function is equivalent to minimization of the discrepancy function 

 ( )    ( )
1 1

ˆ ˆ, , ln ln
ji

mm

ij i j ijkl ijkl ijkl

k l

F p p 
= =

= −τ τ   

where ˆ
iτ  and ˆ

jτ  denote the maximum likelihood estimators of the 1im −  and 1jm −  thresholds of variables ix  and 
jx , 

respectively and 
ijklp  is the sample proportion for ix k=  and 

jx l= . The gradient of ( )F   (Olsson 1979) may be expressed 

as 

 ( )
1 1

ˆ ˆ, ,
ji

mm
ijkl ijkl

ij i j

k l ijkl ij

p
g




 = =

 
= −  

  
τ τ   

where (Olsson 1979)  

 ( ) ( ) ( ) ( )2 2 , 1 2 , , 1 2 , 1 , 1, , , ,
ijkl

ik il i k jl i k j l i k j l

ij


           


− − − −


= − − +


  

where ( )2   denotes the density function of the bivariate standard normal distribution with correlation 
ij . The information 

(Jöreskog, 1994) is given by 
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 ( )
2

1 1

1
ˆ ˆ, ,

ji
mm

ijkl

ij i j

k l ijkl ij

i



 = =

 
=  

  
τ τ   

The Fisher scoring algorithm is used to minimize ( )F   with respect to 
ij . Let

ij = . If 
( )ˆ t  denotes the 𝑡𝑡ℎ successive 

approximation to 


, then the ( 1)stt +  approximation is obtained from 

 
( )
( )

( 1) ( )
ˆ ˆ, ,

ˆ ˆ .
ˆ ˆ, ,

ij i jt t

ij i j

g

i


 



+ = −
τ τ

τ τ
  

Iteration is terminated when the absolute gradient value is below the tolerance limit  = 10−3.  

 

Pearson product-moment correlations 

Suppose that the rows of ( )n pX  are 𝑛 observations of 𝑝 continuous variables 
1 2, , , px x x  with mean vector μ  and 

covariance matrix Σ . The sample covariance matrix, S , is an unbiased estimator of Σ  and may be expressed as 

 ( )( )
1

1

1

n

i i

in =

= − −
−
S x x x x   

where ix  and x  denote observation 𝑖 and the sample mean vector of 1 2 px x x
 =  x , respectively. 

The correlation matrix, P , of 
1 2, , , px x x  is the covariance matrix of the standardized variables 

1 2, , , pz z z  where 

  
1 1− −=
σ σ

P D ΣD  

and 

 i i
i

i

x
z





−
=   

where σD denotes a diagonal matrix with the standard deviations 
1 2, , , p   of 

1 2, , , px x x on the diagonal. The 

sample correlation matrix, R , which contains the Pearson product-moment correlations (Pearson 1896), is an unbiased 

estimator of P and may be expressed as  

  
1 1− −=

s s
R D RD  

where s
D denotes a diagonal matrix with the sample standard deviations 

1 2, , , ps s s of 
1 2, , , px x x on the diagonal. 

 

Polyserial correlations 

Suppose that the rows of  ( ) o cn p =X X X  are 𝑛 observations of 𝑝𝑜 ordinal variables 
1 2, , ,

opx x x with 

1 2, , ,
opm m m categories, respectively and 𝑝𝑐 continuous variables 

1 2, , ,
cpx x x as such that o cp p p+ =  . Suppose 

further that the 𝑝𝑜 ordinal variables are the result of the discretization of the underlying 𝑝𝑜 continuous standard normal 

variables 
1 2, , ,

opz z z as such that 1 2 ( , )
op oz z z N
 =  z 0 P  and 
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0 1

1 2

, 1 ,

1 if

2 if

if
i i

i i i i

i i i i

i i i m i i m

x z

x z

x m z

 

 

 −

=  


=  


 =  

 

where P𝑜 denotes the population correlation matrix of z and 
0 1 2 , ii i i i m   − =    = are parameters known as 

thresholds. The model for the univariate marginal of variable ix  is 

 
,

, 1

( )
i

i k
ik u du




 

−

=    

where (.)  denotes the probability density function of the standard normal distribution. The maximum likelihood estimator 

of ik  (Jöreskog, 1994) is given by  

 
1

1 2
ˆ ( )ik i i ikp p p −= + + +   

where 
1(.)−  denotes the inverse of the cumulative distribution function of the standard normal distribution and 

1 2, , ,
ii i imp p p denote the marginal sample proportions for ix .  

If ix  denotes the i-th ordinal variable and 
jx  denotes the j-th continuous variable with mean 

j  and standard deviation 
j  

and 
ij  is the polyserial correlation of ix  and 

jx , the corresponding bivariate log-likelihood function (Olsson, Drasgow, 

and Dorans 1982) is given by 

 ( ) ( ) ( ) 2

1 1

1
ˆ ˆ ˆ ˆ, , , ln ln 2 ln

2 2

n n

ij i j j ikjm j jm

m m

n
l z     

= =

  = − + −   τ  

where 

ˆ

ˆ

jm j

jm

i

x
z





−
=  

and 

( ) ( )* *

, 1,ijkm ikjm i k jm   −=  −  

where k denotes the observed category of ix ,   denotes the cumulative distribution function of the standard normal 

distribution, and 

*

2

ˆ

1

ik ij jm

ikjm

ij

z 




−
=

−
 

The maximization of the log-likelihood function is equivalent to minimizing the following discrepancy function 

( ) ( )
1

ˆ ˆ ˆ, , , ln
n

ij i j j ikjm

m

F    
=

= −τ  

The gradient of ( ).F  follows as 
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( )
1

1
ˆ ˆ ˆ, , ,

n
ikjm

ij i j j

m ikjm ij

g


  
 =


= −


τ  

where (Olsson, Drasgow, and Dorans 1982) 

( )( ) ( )( )
3

2 * *2
, 1, , 1

ˆ ˆ(1 )
ikjm

ij ikjm ik ij jm i k jm i k ij jm

ij

z z


        


−

− −


 = − − − −
 

 

where   denotes the probability density function of the standard normal distribution. The information follows as 

( )
2

2ˆ ˆ ˆ, , ,
ikjm

ij i j j ikjm

ij

i


   


−
 

=  
  

τ  

The Fisher scoring algorithm is used to minimize ( )F   with respect to 
ij . Let 

ij = . If 
( )ˆ t  denotes the 𝑡𝑡ℎ successive 

approximation to̂ , then the ( 1)stt +  approximation is obtained from 

 
( )
( )

( 1) ( )
ˆ ˆ ˆ, , ,

ˆ ˆ .
ˆ ˆ ˆ, , ,

ij i j jt t

ij i j j

g

i

  
 

  

+ = −
τ

τ
  

Iteration is terminated when the absolute gradient value is below the tolerance limit  = 10−3.  

 

Mixed correlation and asymptotic covariance matrices 

Suppose that the rows of  ( ) o cn p =X X X  are 𝑛 observations of 𝑝𝑜 ordinal variables 
1 2, , ,

opx x x with 

1 2, , ,
opm m m categories, respectively and 𝑝𝑐 continuous variables 

1 2, , ,
cpx x x as such that o cp p p+ = . Let 

( )o o op pR  denote the polychoric correlation matrix of the 𝑝𝑜 ordinal variables, ( )c c cp pR  denote the Pearson product-

moment correlation matrix of the 𝑝𝑐 continuous variables 
1 2, , ,

cpx x x , and ( )oc o cp pR  denote the polyserial 

correlation matrix of the ordinal and continuous variables. The correlation matrix, R , of the ordinal and continuous 

variables may then be expressed as 

 
o oc

oc c

 
=   

R R
R

R R
  

If 
ijF  denotes the discrepancy function which is minimized with respect to 

ij  to obtain the maximum likelihood estimate 

of 
ij , then the asymptotic covariance matrix, 𝚼, of the polychoric, polyserial, and Pearson product-moment correlations 

(Muthen 1984) may be approximated by the matrix, U , with typical element given by 

1

,

1

n

ij kl ijm klm

m

u n g g−

=

=   

where 
ijmg denotes the gradient of

ijF for observation m evaluated at 
ij ijr = . If 

ijr  is a polychoric correlation, this gradient 

is given by 
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( ) ( ) ( ) ( )2 2 , 1 2 , , 1 2 , 1 , 1

1
, , , ,ijm ik il i k jl i k j l i k j l

ijkl

g            


− − − −
 = − − +
 

 

where ( )2   denotes the density function of the bivariate standard normal distribution with correlation 
ij  and k  and l  

denote the observed category of ix  and 
jx  for observation m , respectively. In the case of a Pearson product-moment 

correlation, the gradient for observation m may be expressed as 

 
( )

( )

2 2 2 3

2
2

1

1

im jm im jm ij im jm ij ij

ijm

ij

z z z z r z z r r
g

r

+ − − + −
=

−
  

If 
ijr  denotes the polyserial correlation of ordinal variable ix  and continuous variable 

jx , the gradient for observation m

is given by 

( )( ) ( )( )

( )
, 1 , 1

3/2
21

ik ik ij jm i k i k ij jm

ijm

ij

r z r z
g

r

     − −− − −
=

−
 

where   denotes the probability density function of the standard normal distribution and k  denotes the observed category 

of ix . 

 

Multiple Imputation 

The MCMC method 

Suppose now that the 𝑛 observations of the 𝑝𝑜 ordinal variables include missing data values with 𝑘𝑜  missing data value 

patterns. The EM algorithm and the MCMC method for multiple imputation of incomplete data are intended for continuous 

variables and cannot readily be applied to ordinal variables. However, they can be applied to the underlying continuous 

variables 
1 2, , ,

opz z z associated with the ordinal variables 
1 2, , , .

opx x x Although no observations for these continuous 

variables are available, these variables are assumed to have a multivariate standard normal distribution with a population 

covariance matrix oΣ . As a result, we can simulate data from this distribution by using the polychoric correlation matrix of 

the complete data of the variables if the number of complete cases is large enough and use either the EM algorithm or the 

MCMC algorithm to impute the missing data values for the underlying continuous variables. After imputation, the estimated 

thresholds can be used to replace the missing data values for the corresponding ordinal variables by using the relationship 

between the ordinal variables, the underlying continuous variables, and the thresholds. 

 

Suppose that the rows of ( )on pZ  are 𝑛 observations of the 𝑝𝑜 underlying continuous variables 
1 2, , ,

opz z z simulated 

from the ( , )oN 0 Σ  distribution and that oZ  denotes the observed data values that corresponds with the observed data 

values of X𝑜. The EM algorithm (Dempster, Laird, and Rubin 1977) can be used to compute the maximum likelihood 

estimate of oΣ . The minus two observed-data log likelihood may be expressed as 

1

1 1 1

2ln ( | ) ln
o o ik k n

o o i oi oij oi oij

i i j

L n −

= = =

− = + Σ Z Σ z Σ z  



19 

 

where in  denotes the number of observations of missing data value pattern 𝑖 = 1,2, ⋯ , 𝑘𝑜, oiΣ  denotes the population 

covariance matrix for missing data value pattern 𝑖, and oijz is the 𝑗𝑡ℎ vector of observed values of missing data value pattern 

𝑖. 

 

The initial estimate for the M-step is the sample covariance matrix, 
opS , of the complete ordinal data or 

opI  if the number 

of complete observations is too small. In the E-step, the conditional covariance matrices of the missing variables given the 

observed variables for the missing data value patterns are computed and used to compute an updated estimate,
( 1)ˆ t

o

+
Σ  of oΣ

. Iteration of the consecutive M and E steps is terminated when the absolute difference between 
( 1)ˆ t

o

+
Σ  and 

( )ˆ t

oΣ  is below the 

tolerance limit   = 10−5. 

 

The correlation matrix of the EM estimate, ˆ
oΣ , of oΣ  is used as the initial covariance matrix of the multivariate standard 

normal distribution in the first step of the Monte Carlo Markov Chain (MCMC) method. In the first step (P-step) of the 

MCMC method, an estimate of oΣ  is simulated form an inverse Wishart distribution. In the I-step, observations are simulated 

from the conditional standard normal distributions of the missing variables given the observed 𝑘 missing data value patterns 

and used to replace the missing data values. The next estimate of oΣ  is then obtained by computing the sample correlation 

matrix of the completed data. The P and I steps are repeated for a fixed number of times. 

 

Let the rows of ( )i n pZ  contain the observed and the imputed data values for the standard normal variables 

1 2, , ,
opz z z . The observed data for the ordinal variables are obtained from the corresponding observed data values of 

oX . The missing data values of oX  are then replaced by the values obtained from the corresponding imputed data values 

of Z and the estimated thresholds by using the relationship between the ordinal variables, the underlying continuous 

variables, and the thresholds. 

 

Suppose further that the 𝑛 observations of the 𝑝𝑐 continuous variables include missing data values with 𝑘𝑐 missing data 

value patterns and that the joint distribution of the variables is a multivariate normal distribution with mean vector cμ  and 

covariance matrix cΣ . The EM algorithm and the MCMC method for multiple imputation of incomplete data can be used to 

impute the missing data values of the continuous variables. 

 

Suppose that coX  denote the observed data values. The EM algorithm (Dempster, Laird, and Rubin 1977) can be used to 

compute the maximum likelihood estimate of cΣ . The minus two observed-data log likelihood may be expressed as 

 ( ) ( )1

1 1 1

2ln ( | ) ln
ink k

c co i ci coij ci ci coij ci

i i j

L n −

= = =


− = + − − Σ X Σ x μ Σ x μ   

where in  denotes the number of observations of missing data value pattern 1,2, , ci k= , ciΣ  denotes the population 

covariance matrix of missing data value pattern 𝑖, ciμ  denotes the mean vector of missing data value pattern 𝑖, and 
coijx  is 

the
thj vector of observed values of missing data value pattern 𝑖. 
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The initial estimate for the M-step is the sample covariance matrix,
cpS , of the complete data or 

cpI if the number of complete 

observations is too small. In the E-step, the conditional covariance matrices of the missing variables given the observed 

variables of the missing data value patterns are computed and used to compute an updated estimate 
( 1)ˆ t

c

+
Σ of cΣ . Iteration 

of the consecutive M and E steps is terminated when the absolute difference between 
( 1)ˆ t

c

+
Σ and 

( )ˆ t

oΣ  is below the tolerance 

limit   = 10−5. 

 

The EM estimate, c



Σ , of cΣ  is used as the initial covariance matrix of the multivariate normal distribution in the first step 

of the Monte Carlo Markov Chain (MCMC) method. In the first step (P-step) of the MCMC method, an estimate of cΣ  is 

simulated from an inverse Wishart distribution. In the I-step, observations are simulated from the conditional normal 

distributions of the missing variables given the observed ck  missing data value patterns and used to replace the missing data 

values. The next estimate of cΣ is then obtained by computing the sample covariance matrix of the completed data. The P 

and I steps are repeated for a fixed number of times. 

 

The FCS ordinal logistic regression method 

Suppose that the 𝑛 observations of the op ordinal variables include missing data values and that a joint (multivariate) 

distribution of the variables exists. In this case, the Fully Conditional Specified (FCS) ordinal logistic regression method 

(Brand 1999; Van Buuren 2007) can be used to impute the missing data values. The FCS ordinal logistic regression method 

performs a fixed number of imputations to impute the missing data values. Each imputation consists of a filled-in phase and 

an imputation phase. In the filled-in phase, the missing data values are filled-in by using a sequence of ordinal logistic 

regression analyses for the op ordinal variables. These filled-in data are then used as the initial data for the imputation phase 

in which the missing data values are imputed by using a sequence of ordinal logistic regression analyses for the op ordinal 

variables. These imputed data are then used as the initial data for the next iteration of the imputation phase and a fixed 

number of iterations are executed for each imputation. 

 

The filled-in stage fits the following op ordinal logistic regression models sequentially to the data, namely 

 

1 1

2 2 21 1

3 3 31 1 32 2

1 1 2 2 , 1 1

logit( )

logit( )

logit( )

logit( )
o o o o o o o

k k

k k

k k

p k p k p p p p p

x

x x

x x x

 

  

   

     − −

=

= +

= + +

= + + + +

  

where 
1 2 1( | , , , )ijk j jP x k x x x −=  , logit( ) ln( ) ln( )

jjk jk im  = − , and the elements of 

11 12 21 , 1o op p    −

 =  γ  denote unknown regression weights. The first model is fitted to the complete data for 1x . 

The corresponding estimates are then used to simulate new parameter values from the posterior distribution of the 

parameters which in turn is used to fill-in the missing data values for 1x . The second model is then fitted to the complete 

data for 2x  and the filled-in data for 1x . The final model is fitted to the complete data for 
opx  and the filled-in data for 

1 2 1, , ,
opx x x −

. The filled-in data for 
1 2, , ,

opx x x  are used for the first iteration of the imputation phase. The simulation 

of the new parameter values from the posterior distribution of the parameters and the imputation of the missing data values 
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for each of the p ordinal logistic regression models use the same steps as outlined next for each iteration of the imputation 

stage. 

 

For each iteration of the imputation stage, the following ordinal logistic regression models are fitted sequentially either to 

the filled-in data or the imputed data, namely 

 
1 1 1 1 1 1logit( )

o oijk k j j j j p px x x x     − − + += + + + + + +   

where 
1 1 1( | , , , , )

oijk j j j pP x k x x x x − +=  , logit( ) ln( ) ln( )
jjk jk im  = − , the elements of 

1 2 1 1 1 1i oj m j j p      − − +

 =  γ  denote 1o jp m+ −  unknown regression weights, 1,2,..., oj p= , and 

1,2,..., 1jk m= − . Let 
jV  denote the estimated covariance matrix of the estimator ˆ

jγ  of 
jγ .  

 

New values for the parameters are then simulated from their posterior distribution as 

ˆ
jt j hj

= +γ γ V z  

where hj
V  denotes the upper triangular matrix in the Cholesky decomposition of j hj hj

=V V V , and z is a ( 1) 1o jp m+ −   

standard normal vector. These new parameter values are then used to compute the predicted cumulative probability ˆ
jk  for 

1,2,..., 1jk m= − . A random uniform variable, u , between 0 and 1 is simulated and the missing data values for 
jx  are 

imputed as 1 if 
1

ˆ
ju  , as 𝑘 if 

, 1
ˆ ˆ

j k jku −   , and as 
jm  if .

ˆ
jjmu   

 

The FCS regression method 

Suppose now that the 𝑛 observations of the cp continuous variables include missing data values and that a joint (multivariate) 

distribution of the variables exists. In this case, the Fully Conditional Specified (FCS) regression method (Brand 1999; Van 

Buuren 2007) can be used to impute the missing data values. The FCS regression method performs a fixed number of 

imputations to impute the missing data values. Each imputation consists of a filled-in phase and an imputation phase. In the 

filled-in phase, the missing data values are filled-in by using a sequence of regression analyses for the cp continuous 

variables. These filled-in data are then used as the initial data for the imputation phase in which the missing data values are 

imputed by using a sequence of regression analyses for the cp continuous variables. These imputed data are then used as the 

initial data for the next iteration of the imputation phase and a fixed number of iterations are executed for each imputation. 

 

The filled-in stage fits the following cp regression models sequentially to the data, namely 

 

1 01 1

2 02 21 1 2

3 03 31 1 32 2 3

0 1 1 2 2 , 1 1c c c c c c c cp p p p p p p p

x e

x x e

x x x e

x x x x e



 

  

    − −

= +

= + +

= + + +

= + + + + +
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where the elements of 01 02 , 1c cp p   −

 =  β  denote unknown regression weights and 
1 2, , ,

cpe e e  are cp error 

variables. The first model is fitted to the complete data for 1x . The corresponding estimates are then used to simulate new 

parameter values from the posterior distributions of the parameters which in turn is used to fill-in the missing data values 

for 1x . The second model is then fitted to the complete data for 2x  and the filled-in data for 1x . The final model is fitted to 

the complete data for 
cpx  and the filled-in data for 

1 2 1, , , .
cpx x x −

 The filled-in data for 
1 2, , ,

cpx x x  are used for the 

first iteration of the imputation phase. The simulation of the new parameter values from the posterior distributions of the 

parameters and the imputation of the missing data values for each of the cp regression models use the same steps as outlined 

next for each iteration of the imputation stage. 

 
For each iteration of the imputation stage, the following regression models are fitted sequentially either to the filled-in data 

or the imputed data, namely 

0 1 1 1 1 1 1 c cj j j j j p p jx x x x x e    − − + += + + + + + + +  

where 1,2, , cj p= , the elements of 0 1 1 1 cj j j p    − +

 =  β denote cp unknown regression weights, and 
je  

denotes an error variable with variance 
2

j . The estimated covariance matrix of the estimator ˆ
jβ  of 

jβ  may be expressed 

as 

 ( )
1

2 2

( ) ( )j j j c j c j 
−

=V X X   

where ( )c jX  denotes rows 1,2, , 1, , , cj j p−  of the filled-in or imputed data. New values for the parameters are then 

simulated from their posterior distributions as 

 ( )

2 '

2

2

ˆ

ˆ

jt j tj hj

j j c

tj

n p

c






= +

−
=

β β V z

  

where hjV  denotes the upper triangular matrix in the Cholesky decomposition of j hj hj
=V V V , z denotes a 1cp   standard 

normal vector, and 𝑐 is a Chi-square variable with 
j cn p−  degrees of freedom. The missing data values are then imputed 

as 

 ( )cijm jt ci j ijx z= +β x   

where 
cijmx  denotes a missing data value in row 𝑖 and column 𝑗 of cX , 

( )ci jx  denotes row 𝑖 of ( )c jX , and 𝑧 is a standard 

normal variable. 

 

Average moment matrices 

Suppose that 1 2, , ,i i miX X X  are 𝑚 imputed data sets for the incomplete data matrix, X , of the of 𝑝𝑜 ordinal variables 

1 2, , ,
opx x x and the 𝑝𝑐 continuous variables 

1 2, , ,
cpx x x and that 1 2, , , mR R R and 1 2, , , mU U U denote the 

corresponding mixed correlation matrices and the estimated asymptotic covariance matrices of the mixed correlations, 

respectively. Then, the average mixes correlation matrix is 
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1

1 m

i

im =

= R R  

and the average estimated asymptotic covariance matrix is 

1

1 m

i

im =

= U U  

Chung and Cai (2019) point out that U only captures uncertainty based on complete data. As a result, its inverse cannot be 

used as a weight matrix for the robust DWLS, WLS, and ULS methods for structural equational modeling. A corrected weight 

matrix is obtained by correcting for the between-imputation variation in the estimated mixed correlations and is obtained as 

the inverse of 

( )( )
1

1ˆ
( 1)

m

i i

i

m

m m =

+  = + − − −  
U r r r r  

where r denotes the 𝑝 × (𝑝 − 1)/2 vector consisting of the nondiagonal and nonduplicated elements of the 𝑝 × 𝑝 symmetric 

matrix R. R  and ̂  can be used to fit structural equation models to the average mixed correlation matrix with the robust 

DWLS, WLS, and ULS methods. The corrected robust DWLS and ULS Chi-square test statistic proposed by Chung and Cai 

(2019) is given by 

_ _

( 1)( ( )) ( ( ))BT n
 

= − − −r ρ θ V r ρ θ  

where 

1 1 1 1ˆ ˆ ˆ ˆˆ ˆ ˆ( )− − − − = −V Δ ΔΔ Δ    

where Δ̂ denotes the Jacobian matrix of ( )ρ θ  with respect to the unknown parameters, θ , of the structural equation model 

evaluated at ˆ.=θ θ  The small sample adjusted BT  test statistic (Yuan and Bentler 1997) is given by 

.
1 / ( 1)

B
YB

B

T
T

nT n
=

+ −
 

 
1.4 Measurement model for visual and verbal ability 

The data are the simulated scores of 1250 girls on six psychological tests (visual perception, cubes, lozenges, paragraph 

completion, sentence completion, and word meaning). The corresponding data file is GIRLS.LSF, and the first few 

observations are shown in the image below. 
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Note that the data values of -999999.00 are missing data values. If a different global missing data value code is used, it 

should be assigned using the Define Variables dialog box. 

The theoretical model is a measurement model that specifies that the six psychological tests are indicators of visual ability 

and verbal ability of Junior High students. A path diagram for this model is depicted in the image below. 

 

The SIMPLIS syntax file to fit the theoretical model to the average sample covariance matrix of 30 MCMC imputations is 

shown in the image below. 

 

visperc

cubes

lozenges

paragraf

sentenc

wordmean

VisualAb

ility

VerbalAb

ility
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• Line 1 specifies the data file. 

• Lines 2 and 3 specify the labels for the two latent variables. 

• Lines 4 to 6 specify the measurement model for the six psychological tests. 

• Line 7 requests that the results in the output file should be given in terms of the LISREL model for the measurement 

model (LISREL Output). It also requests that the completely standardized solution should be written to the output 

file (SC), and robust maximum likelihood estimation (ME = ML). The MI2S option invokes the two-stage multiple 

imputation SEM method to fit the model to the average sample covariance matrix of the NM = 30 MCMC imputations 

(IM = MC) based on an initial random seed of IX = 103829.  

• Line 8 requests a path diagram of the model. 

• Line 9 indicates that no more SIMPLIS commands are to be processed. 

 

When the SPL file above is opened in LISREL and the Run LISREL icon is clicked, the following path diagram is obtained. 

 
The corresponding output file, GIRLS4A.OUT, is opened in a separate window. The Chi-square test statistic values listed in 

this file are shown in the image below. 

21.50

10.30

18.82

3.05

6.60

14.84

1.00

1.00

visperc

cubes

lozenges

paragraf

sentenc

wordmean

VisualAb

ility

VerbalAb

ility

4.61

3.29

5.77

3.51

4.16

6.85

0.52

Chi-Square=11.66, df=8, P-value=0.16697, RMSEA=0.019
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These Chi-square test statistic values indicate that the theoretical measurement model for numerical and verbal ability is 

supported by the data. 

 

1.5 Two-wave model for political efficacy and political responsiveness 

This example is based on panel data of the six political efficacy measurements described in Aish and Jöreskog (1990) 

observed in two different calendar years. The data file, PANELUSA.LSF, consists of 933 cases obtained in a USA sample. 

The first few observations of this data file are shown below. 

 

 
 

The data values of -999999.00 are missing data values. If a different global missing data value code is used, it should be 

assigned using the Define Variables dialog box. 

The data are the responses to the following statements: 

• People like me have no say in what the government does (NOSAY) 

• Voting is the only way that people like me can have any say about how the government runs things (VOTING) 

• Sometimes politics and government seem so complicated that a person like me cannot really understand what is  

• going on (COMPLEX) 

• I do not think that public officials care much about what people like me think (NOCARE) 

• Generally speaking, those we elect to Parliament lose touch with the people pretty quickly (TOUCH) 
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• Parties are only interested in people’s votes but not in their opinions (INTEREST)  

The ordered categories are: 

1: agree strongly 

2: agree 

3: disagree 

4: disagree strongly 

 

The theoretical model is a two-wave model for political efficacy and political responsiveness. A path diagram of the 

theoretical model is shown in the image below. 

 
 

The SIMPLIS syntax file to fit the model reflected in the path diagram above to the average polychoric correlation matrix 

of 10 FCS imputations is depicted in the image below. The two-stage multiple imputation SEM syntax is reflected on the 

LISREL Output command as MI2S which requests the method, NM = 10 which requests 10 FCS imputations (IM = FC), and 

IX = 18957 which requests a starting random seed of 18957. 

NOSAY1

COMPLEX1

NOCARE1

TOUCH1

INTERES1

Efficac1

Respons1

Efficac2

Respons2

NOSAY2

COMPLEX2

NOCARE2

TOUCH2

INTERES2
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• Line 1 specifies the raw data file. 

• Lines 2 and 3 specify labels for the latent variables of the model. 

• Lines 4 to 16 specify the two-wave model for political efficacy and political responsiveness. 

• Line 17 requests that the results in the output file should be given in terms of the LISREL model for the structural 

equation model (LISREL Output). It also requests that the completely standardized solution should be written to the 

output file (SC) and weighted least squares estimation (ME = WLS).  

• Line 18 requests a path diagram of the model. 

• Line 19 indicates that no more SIMPLIS commands are to be processed. 

 

When the SPL file above is opened in LISREL and the Run LISREL icon is clicked, the following path diagram is opened. 

 

0.42

0.72

0.29

0.37

0.21

0.46

0.76

0.24

0.38

0.19

NOSAY1

COMPLEX1

NOCARE1

TOUCH1

INTERES1

Efficac1

Respons1

Efficac2

Respons2

NOSAY2

COMPLEX2

NOCARE2

TOUCH2

INTERES2

0.73

0.49

0.43

0.53

0.79

0.90

0.76

0.53

0.57

0.31

0.80

0.89

0.62

0.58

Chi-Square=22.57, df=24, P-value=0.54538, RMSEA=0.000
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The corresponding output file, PANELUSA4A.OUT, is opened in a separate window. A small portion of this file is shown 

in the following image. 

 

 
 

These goodness-of-fit statistic values indicate that the theoretical two-wave model for political efficacy and political 

responsiveness is supported by the data.  

. 

2. Standard error and confidence interval estimates 

2.1 Standard error estimates for standardized solutions 

The LISREL model for observed and latent variables 

The LISREL model (Jöreskog 1973, 1977) for population covariance matrices may be expressed as 

 
y= +y Λ η ε  

 x= +x Λ ξ δ   

  = + +η Bη Γξ ζ   

where y  and x  denote p  and p  indicators of the m  endogenous latent variables, η , and them  exogenous latent 

variables, ξ , respectively, 
yΛ  and xΛ are 

yp m  and 
xp m  matrices of factor loadings, respectively, ε  and δ denote

p  and p  measurement errors, respectively, B  and Γ  are m m   and m m   matrices of regression weights, 

respectively, and the elements of ζ  denote m  error variables. 

The 1t   vector, z , consisting of all the variables of the LISREL model follows as 
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 
 
 
 
 

=  
 
 
 
 
 

y

x

η

z ξ

ε

δ

ζ

 

The model for the relationships between all the variables of the LISREL model may then be expressed as 

t e= +z B z z  

where 

 

y

x

y p

x p

m

t



 
 
 
 
 
 =
 
 
 
 
 
 

0 0 Λ 0 I 0 0

0 0 0 Λ 0 I 0

0 0 B Γ 0 0 I

B 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

  

where nI denotes the n n  identity matrix and 

 
e

 
 
 
 
 

=  
 
 
 
 
 

0

0

0

z ξ

ε

δ

ζ

  

The covariance matrix, tΦ , of ez follows as 

 
t

 

 

 
 
 
 
 

=  
 
 
 
 
 

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Φ 0 0 0 Φ 0 0 0

0 0 0 0 Θ Θ 0

0 0 0 0 Θ Θ 0

0 0 0 0 0 0 Ψ
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where Φ , Θ , Θ , and Ψ  denote the covariance matrices of ξ , ε , δ , and ζ , respectively and  
=Θ Θ denotes the 

covariance matrix between ε  and δ . The t t  covariance matrix of z , t , may then be expressed as 

 ( ) ( )
1 1

t t t t t t t t t

− −   = − − =I B Φ I B ΛΦ Λ  

where ( )
1

t t t

−
= −Λ I B . The ( ) ( )p m p m+  +  covariance matrix,  , of the 

y xp p p= + observed variables and 

m m m = + latent variables, follows as 

 ( ) ( )
1 1

p m t t t t t p m t

− −

+ +

     = − − =   I 0 I B Φ I B I 0 ΛΦ Λ   

whereΛ denotes the ( )p m t+   matrix consisting of the first p m+  rows of tΛ . In terms of the parameter matrices of 

the LISREL model, we obtain that 

 

yy yx y y

xy xx x x

y x

y x

 

 

   

   

 
 
  =
 
  
 

Σ Σ Σ Σ

Σ Σ Σ Σ

Σ Σ Σ Σ

Σ Σ Σ Σ

  

where 

 ( )1 1 *( ) ( )yy y y 

− −  = − − + +Σ Λ I B ΓΦΓ I B Ψ Λ Θ   

 ( )
1

xy yx x y 

−   = = − +Σ Σ Λ ΦΓ I B Λ Θ  

 xx x x 
= +Σ Λ ΦΛ Θ   

 ( )1 1 *( ) ( )y y

− −  = − − +Σ I B ΓΦΓ I B Ψ Λ   

 ( )
1

x x x 

−
 = = −Σ Σ I B ΓΦΛ   

 
1 1 *( ) ( )

− − = − − +Σ I B ΓΦΓ I B Ψ  

 
1( )y y

−  = −Σ ΦΓ I B Λ   

 
x x x 

 = =Σ Σ ΦΛ   

 
1( ) 

−  = = −Σ Σ ΦΓ I B   

  =Σ Φ   

where 

 
* 1 1( ) ( )− − = − −Ψ I B Ψ I B  
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Completely standardized solution 

Suppose now that ˆ
tB  and ˆ

tΦ  denote the unstandardized estimators of tB  and tΦ , respectively. The reproduced covariance 

matrix of the observed and latent variables may then be expressed as 

 ˆ ˆˆ ˆ
t
 = ΛΦ Λ   

The completely standardized covariance matrix of the observed and latent variables follows as 

 
* 1/2 1/2

ˆ ˆ
ˆ ˆˆ ˆ

t

− −

 
 =D ΛΦ ΛD   

where 
1/2

ˆ

−


D denotes a ( ) ( )p m p m+  +  diagonal matrix with the reciprocals of the estimated standard deviations of the 

observed and latent variables on the diagonal. 

The relationships between the unstandardized and the completely standardized estimators are given by 
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1

1 1
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ˆ ˆ

ˆ ˆ ˆ ˆ
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
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   
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−
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   
   
   

=    
   
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   
   
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0 0 D 0 0 0 0 0 0 D 0 0 0 0

0 0 0 D 0 0 0 0 0 0 D 0 0 0

0 0 0 0 D D 0 0 0 0 0 D D 0

B B0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

  

and 

 
1 1*

1 1

1 1

1 1

ˆ ˆˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

t t

y y

x x

 

 

− −

− −

− −

− −

   
   
   
   
   
   =
   
   
   
   
   
   

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 D 0 0 0 0 0 0 D 0 0 0Φ Φ

0 0 0 0 D 0 0 0 0 0 0 D 0 0

0 0 0 0 0 D 0 0 0 0 0 0 D 0

0 0 0 0 0 0 D 0 0 0 0 0 0 D

  

where ˆ
yD , ˆ

xD , ˆ
D , and ˆ

D  denote diagonal matrices with the estimated standard deviations of the elements of y , x , η

, and ξ  on the diagonal, respectively. 

Suppose that the vector θ  consists of the q  unknown elements of B  and Φ . Let θ̂  denotes the unstandardized estimator 

of θ  as such that asymptotically 

 ( )( )ˆ ,Nθ θ H θ   

By using the Delta method (Bishop, Fienberg, and Holland 1988), the asymptotic distribution of the completely standardized 

estimator, 
*
θ̂ , of θ  follows as 
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 ( )( )* *ˆ ,N θ θ ΔH θ Δ   

where 

*


=



θ
Δ

θ
 and the elements of 

*
θ  are the unknown elements of 

*
B  and 

*
Φ . Typical elements of 

*
B  and 

*
Φ are 

given by 

 
* 1/2 1/2

ij ii jj ij   −=   

and 

 
* 1/2 1/2

ij rr ss ij   − −=  

respectively where r  and s  are defined as 

 
if if 

 and  
if if 

i i p m j j p m
r s

i p m i p m j p m j p m

 +  + 
= = 

− −  + − −  + 
  

respectively. Suppose that the sets IB and I
Φ  are sets containing the row and column positions of the unknown elements 

of B  and Φ , respectively, i.e. 

 ( )  ( ) , :  and , :ij ijI i j I i j =  = B Φθ θ   

respectively. The partial derivatives of the diagonal elements of   with respect to the elements of B  and Φmay then be 

expressed as 

 
( )

( )

2 if ,

0 if ,

ik ilii

kl

k l I

k l I

 




= 



B

B

  

and   

 
( ) ( )

( )

1
2 1 if ,

0 if ,

kl ik ilii

kl

k l I

k l I

  



− + 
= 



Φ

Φ

  

respectively where kl  denotes the Kronecker delta, i.e. 

 
1 if 

0 if 
kl

k l

k l


=
= 


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Typical elements of Δ  may be expressed as 

  

( ) ( )

( ) ( )

( ) ( )

( ) ( )

*

*

, *

*

if ,  and ,

if ,  and ,

if ,  and ,

if ,  and ,

ij

kl

ij

kl

ij kl

ij

kl

ij

kl

i j I k l I

i j I k l I

i j I k l I

i j I k l I


















 



  


= 


 



 


B B

B Φ

Φ B

Φ Φ

Δ   

where  

 

*

1/2 1/2 3/2 1/2 1/2 1/2ij ij

jk jl ii jj ij ik il ii jj ij ii jj

kl kl

 
           

 

− − − −= − +   

 

*

1/2 1/2 3/2 1/2 1(1 )
ij

jk jl ii jj ik il ii jj kl ij

kl


         



− − − − = − +    

 

*

3/2 1/2 1/2 3/2ij

ik il ii jj jk jl ii jj ij

kl


        



− − − − = − +    

 ( )
*

13/2 1/2 1/2 3/2 1/2 1/21
ij ij

ik il ii jj jk jl ii jj kl ij ii jj

kl kl

 
           

 

−− − − − − − = − + + +    

The standard error estimates of the completely standardized estimators of the elements of θ  are obtained as the positive 

square roots of the diagonal elements of the estimated asymptotic covariance matrix of 
*
θ̂ which is given by 

 ( ) ( ) ( ) ( )* * * *ˆ ˆ ˆ ˆ ˆ ˆ, ,


=H θ Δ θ θ H θ Δ θ θ   

These standard error estimates are numerically equivalent to those obtained by transforming correlation structures to 

covariance structures and fitting the transformed covariance structures correctly to the sample correlation matrices by using 

the theory and methods for covariance structures proposed by Shapiro and Browne (1990) which are implemented in Steiger 

(1995) and Browne and Mels (1996). Whenever a LISREL model without parameter equality constraints is fitted to a sample 

correlation matrix, the standard error estimates of the completely standardized solution are the correct standard error 

estimates which addresses the issue of incorrect standard error estimates for correlation matrices pointed out by Cudeck 

(1989).  

 

Standardized solution 

Let ˆ
tB  and ˆ

tΦ  denote the unstandardized estimators of tB  and tΦ , respectively and let 
*ˆ
tB  and 

*ˆ
tΦ denote the 

corresponding standardized estimators. The relationships between the unstandardized and the standardized estimators of tB  

and tΦ  are given by 
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1 1

*

ˆ

ˆ

ˆ ˆˆ ˆ

ˆ ˆ

y

x

p

p

t t





  

− −

   
   
   
   
   

=    
   
   
   
   

  
  

0 0 I 0 0 0 0 0 0 D 0 0 0 0

0 0 0 I 0 0 0 0 0 0 D 0 0 0

0 0 0 0 D D 00 0 0 0 D D 0

B B 0 0 0 0 0 0 00 0 0 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0

0 0 0 0 0 0 00 0 0 0 0 0 0

  

and 

 
1 1

*

1 1

ˆ ˆˆ ˆ

ˆ ˆ

y y

x x

t t

p p

p p

 

 

− −

− −

   
   
   
   
   
   =
   
   
   
   
   
   

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 D 0 0 0 0 0 0 D 0 0 0Φ Φ

0 0 0 0 I 0 0 0 0 0 0 I 0 0

0 0 0 0 0 I 0 0 0 0 0 0 I 0

0 0 0 0 0 0 D 0 0 0 0 0 0 D

  

respectively where ˆ
D  and ˆ

D  denote diagonal matrices with the estimated standard deviations of the elements of η  and 

ξ  on the diagonal, respectively. 

Suppose that the vector θ  consists of the q  unknown elements of B  and Φ . Let θ̂  denotes the unstandardized estimator 

of θ  as such that asymptotically 

 ( )( )ˆ ,Nθ θ H θ   

By using the Delta method (Bishop, Fienberg, and Holland 1988), the asymptotic distribution of the standardized estimator, 
*
θ̂ , of θ  follows as 

 ( )( )* *ˆ ,N θ θ ΔH θ Δ   

where 

*


=



θ
Δ

θ
 and the elements of 

*
θ  are the unknown elements of 

*
B  and 

*
Φ . Typical elements of 

*
B  and 

*
Φ are 

given by 

 

1/2

*

1/2 1/2

if 

if 

jj ij

ij

ii jj ij

i p

i p

 


  −

 
= 


  

and 

 
( )

( )

1/2 1/2

1*

2

if ,

if ,

rr ss ij

ij

ij

i j I

i j I

  




− − 
= 


  

respectively where r  and s  are defined as 
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if if 

 and  
if if 

i i p m j j p m
r s

i p m i p m j p m j p m

 +  + 
= = 

− −  + − −  + 
  

respectively and where the sets 1I  and 2I  are defined as 

    1 2( , ) : ,  or , 2  and ( , ) : , 2I i j i j p m i j p m I i j p m i j p m=  +  + = +   +   

respectively. 

Suppose that the sets IB
and I

Φ  are sets containing the row and column positions of the unknown elements of B  and Φ , 

respectively, i.e. 

 ( )  ( ) , :  and , :ij ijI i j I i j =  = B Φθ θ   

respectively. The partial derivatives of the diagonal elements of   with respect to the elements of B  and Φmay then be 

expressed as 

 
( )

( )

2 if ,

0 if ,

ik ilii

kl

k l I

k l I

 




= 



B

B

  

and   

 
( ) ( )

( )

1
2 1 if ,

0 if ,

kl ik ilii

kl

k l I

k l I

  



− + 
= 



Φ

Φ

  

respectively where kl  denotes the Kronecker delta, i.e. 

 
1 if 

0 if 
kl

k l

k l


=
= 


  

Typical elements of Δ  may be expressed as 

  

( ) ( )

( ) ( )

( ) ( )

( ) ( )

*

*

, *

*

if ,  and ,

if ,  and ,

if ,  and ,

if ,  and ,

ij

kl

ij

kl

ij kl

ij

kl

ij

kl

i j I k l I

i j I k l I

i j I k l I

i j I k l I


















 



  


= 


 



 


B B

B Φ

Φ B

Φ Φ

Δ   
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where  

 

1/2 1/2

*

1/2 1/2 3/2 1/2 1/2 1/2

if 

if 

ij

jk jl jj ij jj

klij

ijkl

jk jl ii jj ij ik il ii jj ij ii jj

kl

i p

i p


    




           



−

− − − −


+ 


= 
 − + 



  

 

1 1/2*

1/2 1/2 3/2 1/2 1

(1 ) if 

(1 ) if 

kl jk jl jj ijij

kl jk jl ii jj ik il ii jj kl ij

i p

i p

    

          

− −

− − − −

 + 
= 

 − +  

  

 
( )

( )

3/2 1/2 1/2 3/2*

1

2

if ,

0 if ,

ik il ii jj jk jl ii jj ijij

kl

i j I

i j I

        



− − − −  − +   = 


  

 

( )
1

13/2 1/2 1/2 3/2 1/2 1/2

*

2

1 if ( , )

if ( , )

ij

ik il ii jj jk jl ii jj kl ij ii jj

klij

ijkl

kl

i j I

i j I


           







−− − − − − −
 − + + +   


= 
 



  

The standard error estimates of the completely standardized estimators of the elements of θ  are obtained as the positive 

square roots of the diagonal elements of the estimated asymptotic covariance matrix of 
*
θ̂ which is given by 

 ( ) ( ) ( ) ( )* * * *ˆ ˆ ˆ ˆ ˆ ˆ, ,


=H θ Δ θ θ H θ Δ θ θ   

 

2.2 Confidence interval estimates 

The extended LISREL model 

In the extended LISREL model (Jöreskog and Sörbom 1999), the three sets of relationships between the observed and latent 

variables are given by 

 
y y= + +y τ Λ η ε  

 x x= + +x τ Λ ξ δ  

 = + + +η α Bη Γξ ζ   

where the elements of y  denote 
yp  observed indicators of the m  endogenous latent variables η , the elements of x  denote 

xp  observed indicators of the m  exogenous latent variables ξ , the elements of ε  denote 
yp  measurement errors, the 

elements of δ  denote xp  measurement errors, the elements of ζ  denote m  error variables, the elements of 
yτ  are 

yp  

intercepts, the elements of xτ  are xp  intercepts, the elements of α  are m  intercepts, the elements of 
yΛ  are 

yp m  

measurement weights, the elements of xΛ  are 
xp m  measurement weights, the elements of B  are m m   regression 

weights, and the elements of Γ  are m m   regression weights. We assume that ζ  is uncorrelated with ξ , ε  is 
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uncorrelated with η , and that δ  is uncorrelated with ξ . We also assume that the means of ε , and δ , and ζ  are zero, but 

it is not assumed that the means of ξ  and η  are zero. If the mean of ξ  is denoted by κ , the mean of η  follows as 

 
1( ) ( )

−= − +μ I B α Γκ  

The mean vectors of the observed indicators are given by 

 

1( ) ( )y y y

x x x

− + − + 
= =   

+   

μ τ Λ I B α Γκ
μ

μ τ Λ κ
  

The covariance matrix of the observed indicators follows as 

  

 
( )

( )

1 1 * 1

1

( ) ( ) ( )y y y x

x y x x

 

 

− − −

−

   − − + + − +
 

=
 

  − + +  

Λ I B ΓΦΓ I B Ψ Λ Θ Λ I B ΓΦΛ Θ
Σ

Λ ΦΓ I B Λ Θ Λ ΦΛ Θ

  

where 

 
* 1 1( ) ( )− − = − −Ψ I B Ψ I B  

and Φ  denotes the covariance matrix of ξ , Θ  denotes the covariance matrix of ε , Θ  denotes the covariance matrix of 

δ ,  
=Θ Θ  denotes the covariance matrix between δ  and ε  , and Ψ  denotes the covariance matrix of ζ .  

The q  unknown parameters θ  of the extended LISREL model consist of the unknown elements of 
yΛ , xΛ , B , Γ , Φ , 

Ψ , Θ , Θ ,  
=Θ Θ , 

yτ , xτ , α , and κ .   

 

Unstandardized solution 

Suppose that θ̂  denote the unstandardized estimators of the parameters θ  of the extended LISREL model as such that 

asymptotically   

( )( )ˆ ,Nθ θ H θ  

The elements of θ consists of intercepts, measurement weights, regression weights, variances, and covariances. The 

intercepts, measurement weights, regression weights, and covariances are unbounded parameters. As a result, the 

100(1 )%−  approximate confidence interval estimates of these parameters (Browne 1982) are given by 

 ( ) ( )( )/2 /2
ˆ ˆ ˆ ˆ;i i i iz s z s    − +   

where ˆ
i  denotes the estimate of i , /2z  denotes the 100(1 / 2)%−  critical value of the standard normal distribution 

and ( ) ( )ˆ ˆ
i

ii

s   =
 
H θ denotes the estimate of the standard error of the estimator of i . If i  denotes a variance, then i  

is a bounded parameter as such that 0 i   . In this case, a logarithmic transformation is used as such that the 

100(1 )%−  approximate confidence interval estimate of i  (Browne 1982) follows as 
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 ( )( ) ( )( )( )/2 /2
ˆ ˆ ˆ ˆ ˆ ˆexp ; expi i i i i iz s z s      −   

Standardized solution 

Let 
*
θ̂  denote the standardized estimators of the parameters θ  of the extended LISREL model. By using the Delta method 

(Bishop, Feinberg, and Holland 1988), it follows that asymptotically   

( )( )* *ˆ ,N θ θ ΔH θ Δ  

where Δ  denotes is Jacobian matrix of 
*
θ  with respect to θ . The elements of 

*
θ consists of intercepts of the observed 

indicators, measurement weights, standardized regression weights, variances, standardized variances, covariances, and 

correlations. The intercepts of the observed variables, measurement weights, and covariances are unbounded parameters. 

As a result, the 100(1 )%−  approximate confidence interval estimates of these parameters (Browne 1982) are given by 

 ( ) ( )( )* * * *

/2 /2
ˆ ˆ ˆ ˆ;i i i iz s z s    − +   

where 
*ˆ
i  denotes the estimate of 

*

i , /2z  denotes the 100(1 / 2)%−  critical value of the standard normal distribution 

and ( ) ( ) ( ) ( )* * *ˆ ˆ ˆ ˆ ˆ ˆ, ,i

ii

s 
 

=  
 
Δ θ θ H θ Δ θ θ denotes the estimate of the standard error of the estimator of 

*

i . If 
*

i  denotes 

a variance, then 
*

i  is a bounded parameter as such that 
*0 i  . In this case, a logarithmic transformation is used as 

such that the 100(1 )%−  approximate confidence interval estimate of 
*

i  (Browne 1982) follows as 

 ( )( ) ( )( )( )/2 /2
ˆ ˆ ˆ ˆ ˆ ˆexp ; expi i i i i iz s z s      −   

If 
*

i  denotes a standardized variance, then 
*

i  is a bounded parameter as such that 
*0 1i  . The 100(1 )%−  

approximate confidence interval estimate of 
*

i  (Browne 1982) may be expressed as 

 

( )
( )

( ) ( )
( )

( )

* *

/2 /2

* * * * * *

ˆ ˆ
1 1

1 1 exp ; 1 1 exp
ˆ ˆ ˆ ˆ ˆ ˆ1 1 1 1

i i

i i i i i i

z s z s  

     

       −
       + +
       − − − − 

       

  

When 
*

i  is a standardized regression weight or a correlation, 
*

i is bounded as such that 
*1 1i−   . In this case, the 

Fisher z-transformation is used as such that the 100(1 )%−  approximate confidence interval estimate of 
*

i  (Browne 

1982) is given by 

( )
( )

( )
( )

( )
( )

( )
( )

* *
* *

/2 /2

* **2 *2

* *
* *

/2 /2

* **2 *2

ˆ ˆ2 2ˆ ˆ1 1
exp 1 exp 1

ˆ ˆˆ ˆ1 11 1
;

ˆ ˆ2 2ˆ ˆ1 1
exp 1 exp 1

ˆ ˆˆ ˆ1 11 1

i i
i i

i ii i

i i
i i

i ii i

z s z s

z s z s

 

 

  

  

  

  

    −   + +    − −   
    − −− −      

   −   + +   + +   
   − −− −      






 
 
  


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Completely standardized solution 

If 
*
θ̂  denote the completely standardized estimators of the parameters θ  of the extended LISREL model, the asymptotic 

distribution of 
*
θ̂  is obtained by means of the Delta method (Bishop, Feinberg, and Holland 1988) as  

( )( )* *ˆ ,N θ θ ΔH θ Δ  

where Δ  denotes is Jacobian matrix of 
*
θ  with respect to θ . The elements of 

*
θ consists of standardized measurement 

weights, standardized regression weights, standardized variances, and correlations.  

If 
*

i  denotes a standardized variance, then 
*

i  is a bounded parameter as such that 
*0 1i  . The 100(1 )%−  

approximate confidence interval estimate of 
*

i  (Browne 1982) may be expressed as 

 

( )
( )

( ) ( )
( )

( )

* *

/2 /2

* * * * * *

ˆ ˆ
1 1

1 1 exp ; 1 1 exp
ˆ ˆ ˆ ˆ ˆ ˆ1 1 1 1

i i

i i i i i i

z s z s  

     

       −
       + +
       − − − − 

       

  

where 
*ˆ
i  denotes the estimate of 

*

i , /2z  denotes the 100(1 / 2)%−  critical value of the standard normal distribution 

and ( ) ( ) ( ) ( )* * *ˆ ˆ ˆ ˆ ˆ ˆ, ,i

ii

s 
 

=  
 
Δ θ θ H θ Δ θ θ denotes the estimate of the standard error of the estimator of 

*

i .  

When 
*

i  is a standardized measurement weight, a standardized regression weight, or a correlation, 
*

i is bounded as such 

that 
*1 1i−   . In this case, the Fisher z-transformation is used a such that the 100(1 )%−  approximate confidence 

interval estimate of 
*

i  (Browne 1982) is given by 

( )
( )

( )
( )

( )
( )

( )
( )

* *
* *

/2 /2

* **2 *2

* *
* *

/2 /2

* **2 *2

ˆ ˆ2 2ˆ ˆ1 1
exp 1 exp 1

ˆ ˆˆ ˆ1 11 1
;

ˆ ˆ2 2ˆ ˆ1 1
exp 1 exp 1

ˆ ˆˆ ˆ1 11 1

i i
i i

i ii i

i i
i i

i ii i

z s z s

z s z s

 

 

  

  

  

  

    −   + +    − −   
    − −− −      

   −   + +   + +   
   − −− −      






 
 
  



 

   

2.3 Structural equation model for work ethic  

The data are the scores of 194 first-year students at a high school in Bainbridge, Georgia on ten observed scores (average 

socio-economic index, average age of parents, grade point average, self-esteem at school, self-esteem at home, self-esteem 

around peers, attitude towards father, attitude towards mother, work ethic, and average education level of parents). The first 

couple of observations of the corresponding data file, STUDENTS.LSF, are shown below. 
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The theoretical model is a structural equation model that suggests that socio-economic status, home environment, grade 

point average, and self-esteem at school are antecedents of self-esteem around peers and work ethic. A path diagram for this 

model is depicted in the image below. 

 

 

The SIMPLIS syntax file for the theoretical model above is shown in the image below. 

 

AVG_SES

AVGP_AGE

GPA

S_SE_S

S_SE_H

CAF

CAM

AVGP_EDU

SES

HOME_ATT

APTITUDE

SCHOOLAT

T

SEPEERS

WETHIC

S_SE_P

TOTAL_OW
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• Line 1 specifies data file to be used. 

• Lines 2 to 3 specify the labels for the latent variables of the model. 

• Lines 4 to 16 specify the model to be fitted to the data. 

• Line 17 requests the standardized and completely standardized solutions. 

• Line 18 requests a path diagram of the model. 

• Line 19 indicates that no more SIMPLIS commands are to be processed. 

 
If the SPL file is opened in LISREL and the Run LISREL icon is clicked, the path diagram shown above is obtained. 

 

14.16

22.94

0.00

0.00

4.80

304.61

87.24

1.68

0.00

0.00

AVG_SES

AVGP_AGE

GPA

S_SE_S

S_SE_H

CAF

CAM

AVGP_EDU

SES

HOME_ATT

APTITUDE

SCHOOLAT

T

SEPEERS

WETHIC

S_SE_P

TOTAL_OW

1.00

1.00

10.88

2.44

1.00

1.00

0.51

9.62

13.77

1.60

0.18

0.47

-0.26

0.08

0.39

0.12

-0.69

0.06

0.13

Chi-Square=28.71, df=24, P-value=0.23138, RMSEA=0.032
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The corresponding output file, STUDENTS.OUT, is opened in a separate window. The confidence interval estimates of the 

structural equation model parameters for the unstandardized solution, the standardized solution, and the completely 

standardized solution, which are listed in this file, are shown in the images below. 

 

 

 

 

 

 

Note that the confidence interval estimates for the standardized and completely standardized solutions are identical since 

the variances of all the latent variables of the model are scaled to be equal to unity for both solutions. However, the 

confidence interval estimates of the parameters of the measurement model of the standardized and completely standardized 
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solutions differ since the variances of the observed variables are not scaled for the standardized solution but are scaled to 

be equal to unity for the completely standardized solution. 

 

3. Variance constraints for endogenous latent variables 

3.1 Estimation 

The general LISREL model for observed and latent variables 

The general LISREL model (Jöreskog 1973, 1977) for population covariance matrices may be expressed as 

 
y= +y Λ η ε  

 x= +x Λ ξ δ   

  = + +η Bη Γξ ζ   

where y  and x  denote p  and p  indicators of the m  endogenous latent variables, η , and them  exogenous latent 

variables, ξ , respectively, 
yΛ  and xΛ are 

yp m  and 
xp m  matrices of factor loadings, respectively, ε  and δ denote

p  and p  measurement errors, respectively, B  and Γ  are m m   and m m   matrices of regression weights, 

respectively, and the elements of ζ  denote m  error variables. 

The 1t   vector, z , consisting of all the variables of the LISREL model follows as 

 

 
 
 
 
 

=  
 
 
 
 
 

y

x

η

z ξ

ε

δ

ζ

 

The model for the relationships between all the variables of the LISREL model may then be expressed as 

t e= +z B z z  

where 

 

y

x

y p

x p

m

t



 
 
 
 
 
 =
 
 
 
 
 
 

0 0 Λ 0 I 0 0

0 0 0 Λ 0 I 0

0 0 B Γ 0 0 I

B 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
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where nI denotes the n n  identity matrix and 

 
e

 
 
 
 
 

=  
 
 
 
 
 

0

0

0

z ξ

ε

δ

ζ

  

The covariance matrix, tΦ , of ez follows as 

 
t

 

 

 
 
 
 
 

=  
 
 
 
 
 

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Φ 0 0 0 Φ 0 0 0

0 0 0 0 Θ Θ 0

0 0 0 0 Θ Θ 0

0 0 0 0 0 0 Ψ

  

where Φ , Θ , Θ , and Ψ  denote the covariance matrices of ξ , ε , δ , and ζ , respectively and  
=Θ Θ denotes the 

covariance matrix between ε  and δ . The t t  covariance matrix of z , t , may then be expressed as 

 ( ) ( )
1 1

t t t t t t t t t

− −   = − − =I B Φ I B ΛΦ Λ  

where ( )
1

t t t

−
= −Λ I B . The ( ) ( )p m p m+  +  covariance matrix,  , of the 

y xp p p= + observed variables and 

m m m = + latent variables, follows as 

 ( ) ( )
1 1

p m t t t t t p m t

− −

+ +

     = − − =   I 0 I B Φ I B I 0 ΛΦ Λ   

whereΛ denotes the ( )p m t+   matrix consisting of the first p m+  rows of tΛ . The p p  covariance matrix, Σ , of 

the p  observed variables may be expressed as 

 
p t p

=Σ Λ Φ Λ   

where
pΛ denotes the p t  matrix consisting of the first p  rows of tΛ . 

In terms of the parameter matrices of the general LISREL model, we obtain that 

 

yy yx y y

xy xx x x

t

y x

y x

 

 

   

   

 
 
  =
 
  
 

Σ Σ Σ Σ

Σ Σ Σ Σ

Σ Σ Σ Σ

Σ Σ Σ Σ

  



46 

 

where 

 ( )1 1 *( ) ( )yy y y 

− −  = − − + +Σ Λ I B ΓΦΓ I B Ψ Λ Θ   

 ( )
1

xy yx x y 

−   = = − +Σ Σ Λ ΦΓ I B Λ Θ  

 xx x x 
= +Σ Λ ΦΛ Θ   

 ( )1 1 *( ) ( )y y

− −  = − − +Σ I B ΓΦΓ I B Ψ Λ   

 ( )
1

x x x 

−
 = = −Σ Σ I B ΓΦΛ   

 
1 1 *( ) ( )

− − = − − +Σ I B ΓΦΓ I B Ψ  

 
1( )y y

−  = −Σ ΦΓ I B Λ   

 
x x x 

 = =Σ Σ ΦΛ   

 
1( ) 

−  = = −Σ Σ ΦΓ I B   

  =Σ Φ   

where 

 
* 1 1( ) ( )− − = − −Ψ I B Ψ I B  

 

Variances of the latent variables 

The covariance matrices of the p  endogenous latent variables, η , and the p  exogenous latent variables, ξ , are given by 

  1 1( ) ( )

− − = − + −Σ I B ΓΦΓ Ψ I B  

and 

  =Σ Φ   

respectively.  

The variances of the exogenous latent variables are the diagonal elements of Φ  and are parameters of the LISREL model. 

As a result, these variances can be fixed to unity to ensure that the corresponding factor loadings (elements of xΛ ) are 

standardized. 

The variances of the endogenous latent variables are the diagonal elements of Σ  and are not parameters of the general 

LISREL model. Instead, they are complex functions of the regression weights, variances and covariances of the exogenous 

variables, and the regression error variances and covariances of the general LISREL model. As a result, equality constraints 

are required to constrain the variances of the endogenous latent variables to unity to ensure that the corresponding factor 
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loadings (elements of 
yΛ ) are standardized. In the case of the general LISREL model, these constraints may be expressed 

as 

  
,

1 0 1,2, ,
p i p i

i m+ +
 − =  =   

Typical elements of the Jacobian matrix of these equality constraints (Mels 1988) follow as 

   ( ) ( )2 i k i kik
c d =L   

where 

 

 ( )
 

( )  

.,

1

.,

if  denotes a regression weight 

1 if  denotes a variance or covariance

kp i

k

ij kp i






+

−

+




= 
+ 

Λ

c
Λ

  

and 

 ( )
 

 
.,

.,

if  denotes a regression weight 

if  denotes a variance or covariance

kp j

k

kp j






+

+

 
= 


d
Λ

  

where i  and j  denote the row and column of the parameter of the general LISREL model, respectively,  
. j

A  denotes the 

thj column of the matrix A , and 
ij  denotes the Kronecker delta. 

 

Gauss-Newton algorithm 

Suppose that the elements of θ  consist of the q  unknown parameters of the general LISREL model and that ( )f   denotes 

the discrepancy function to be minimized with respect to the elements of θ  subject to the constraints that the variances of 

the endogenous latent variables are equal to unity.  

Let λ  denote the vector of Lagrange multipliers associated with the m  equality constraints for the variances of the 

endogenous latent variables. If 
( )ˆ t
θ  and 

( )ˆ t
λ  denote the 

tht  successive approximation to the estimators θ̂  and λ̂  

respectively, then the 
st( 1)t +  approximation (Browne and du Toit, 1992) is obtained from 

 

( ) ( ) ( )( ) ( )( )
( )( )

( )( )

( )

1

1

( 1) ( ) ( )

ˆ ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆ

t t t
t t

t
t t t t



−

+

+

      
   = −   
                

H θ L θ g θθ θ

λ λ L θ 0 c λ
  

where ( )g  denotes the gradient vector of ( )f  , ( )H  denotes the approximate Hessian matrix of ( )f  , ( )L  denotes 

the Jacobian matrix of the equality constraints for the variances of the endogenous latent variables with respect to the 

elements of θ , and t  denotes a selected step-size parameter (Browne 1982) to ensure that 

 ( ) ( ) ( ) ( ) ( ) ( )( 1) ( ) ( ) ( ) ( ) ( )

1 1

2 2

m m

t t t t t t

i i i i

i i

f c f c
 

 +

= =

+  + θ θ θ θ θ θ   
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with 1t =  in most cases. The maximum absolute residual cosine is the maximum absolute value of 

 

( )( )

( )

( )( ) ( )( )
( )( )

( )( )
( )

ˆ ˆ ˆ
ˆ 1,2, ,

ˆ ˆ

t t t

t

tt

i ii

f i q m

   
     = +
   
      

g θ H θ L θ
θ

c λ L θ 0
  

Iteration is terminated when the maximum absolute residual cosine falls below the tolerance limit of 
410rc
−=  and the 

maximum absolute constraint falls below the tolerance limit of 
610c
−=  (Browne 1982). After convergence, estimated 

standard errors of the estimators and the Lagrange multipliers are computed as the positive square roots of the diagonal 

elements of the matrix 

 

( )( ) ( )( )
( )( )

1
ˆ ˆ

1

1 ˆ

t t

tn

−

 
 
 −
  

H θ L θ

L θ 0
  

where n  denotes the sample size. 

If the data distribution of the continuous observed variables is assumed to be a multivariate Normal distribution, typical 

elements of the gradient vector and the approximate Hessian matrix (Mels 1988) may be expressed as 

   2 ( ) ( )k kk
 = −g a Ωb   

and 

   ( )2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )k l k l k l k lkl
          = +H a a b b a b b a   

where 

 ( )1 2 1 2

p t p

− − = −Ω V S Λ Φ Λ V   

where  S  denotes the sample covariance matrix, ( ) 
1

ˆ
−

=V Σ θ  for maximum likelihood estimation, 
1−=V S for 

generalized least squares estimation, and 
p=V I for unweighted least squares estimation and  

 ( )
( )

1 2

.

1
1 2

.

if  denotes a regression weight 

1 if  denotes a variance or covariance

p ki

k

ij p ki






−

−
−

   
= 

 +   

V Λ
a

V Λ
  

and 

 ( )

1 2

.

1 2

.

if  denotes a regression weight 

if  denotes a variance or covariance

p kj

k

p kj






−

−

   
= 

   

V

b
V Λ

  

where 
pΛ and 

p  contain the first p  rows of Λ and  , respectively, i  and j  denote the row and column of the parameter 

of the general LISREL model, respectively,  
. j

A  denotes the 
thj column of the matrix A , and 

ij  denotes the Kronecker 

delta. 
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If the data distribution of the continuous observed variables is a multivariate distribution with finite eight-order moments, 

the gradient vector, and the approximate Hessian matrix (Browne 1982, 1984) of the weighted least squares (distribution 

free) discrepancy function 

 ( ) ( )( ) ( )( )1f −= − −θ s σ θ W s σ θ   

are given by 

 ( ) ( )( )1−= − −g θ ΔW s σ θ   

and 

 ( ) 1−=H θ ΔW Δ   

where s  denotes the ( 1) 2 1p p +   vector consisting of the nonduplicated elements of the sample covariance matrix S , 

( )σ θ  denotes the ( 1) 2 1p p +   vector consisting of the nonduplicated elements of the general LISREL model for the 

population covariance matrix, W  is a weight matrix with typical elements (Browne 1984) given by 

 
,ij kl ijkl ij klw w w w= −   

Δ  is the Jacobian matrix of ( )σ θ  with respect to θ , and  

 ( ) ( )( )( )
1

1 n

ijkl im i jm j km k lm l

m

w x x x x x x x x
n =

= − − − −   

 ( )( )
1

1 n

ij im i jm j

m

w x x x x
n =

= − −   

where  

 
1

1 n

i im

m

x x
n =

=    

  

3.2 MIMIC model for peer influences on ambition 

The data are scores for the occupational aspiration, the educational aspiration, the intelligence, the socio-economic status, 

and the parental aspiration of 329 students and their best friends at a Michigan high school used in a study by Duncan, 

Haller, and Portes (1971). The corresponding data file is PEERS.LSF, and the first few observations are depicted below. 
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The theoretical model is a Multiple Indicators, Multiple Causes (MIMIC) model that suggests that the respondent’s parental 

aspiration, intelligence, and socio-economic status along with the best friend’s socio-economic status are causes of the 

respondent’s ambition and that the best friend’s parental aspiration, intelligence, and socio-economic status along with the 

respondent’s socio-economic status are causes of the best friend’s ambition. A path diagram for this model is shown in the 

image below. 

 
The SIMPLIS syntax file to fit the theoretical model above to the student data is shown in the image below. 

 

 

• Line 1 specifies the data file. 

• Lines 2 to 3 specify the labels for the latent variables of the model. 

• Lines 4 to 8 specify the theoretical model. 

• Line 9 requests that all the factor loadings for the two endogenous latent variables are estimated by constraining 

their variances to be equal to unity (SO option) and the completely standardized solution (SC option). 

REINTGCE

REPARASP

RESOCIEC

BFINTGCE

BFPARASP

BFSOCIEC

Reambitn

Bfambitn

REOCCASP

REEDASP

BFOCCASP

BFEDASP
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• Line 10 requests a path diagram of the model. 

• Line 11 indicates that no more SIMPLIS commands are to be processed. 

If this SPL file is opened in LISREL and the Run LISREL icon is clicked, the following path diagram is obtained. 

 
The corresponding output file, PEERS.OUT, is opened in a separate window. The completely standardized estimates along 

with the standard error estimates, the test statistic values, and the exceedance probabilities for the free parameters of the 

measurement and structural models, which are listed in this file, are shown in the images below. 
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Chi-Square=26.89, df=16, P-value=0.04269, RMSEA=0.046
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These results agree with those obtained by fitting the theoretical model correctly to the sample correlation matrix using the 

special statistical methods implemented in Steiger (1995) and Browne and Mels (1996). 
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4. Models for mean vectors and covariance matrices 

4.1 Estimation 

The extended LISREL model for observed and latent variables 

The extended LISREL model (Sörbom 1981) for population mean vectors and population covariance matrices may be 

expressed as 

 
y y= + +y τ Λ η ε  

 x x= + +x τ Λ ξ δ   

  = + + +η α Bη Γξ ζ   

where y  and x  denote p  and p
 indicators of the m

 endogenous latent variables, η , and the m
 exogenous latent 

variables, ξ , respectively, 
yτ  and xτ  are 1yp   and 1xp   vectors of measurement intercepts, respectively, 

yΛ  and xΛ

are 
yp m  and 

xp m  matrices of factor loadings, respectively, ε  and δ  denote p  and p  measurement errors, 

respectively, α  is a 1m   vector of regression intercepts, B  and Γ  are m m   and m m   matrices of regression 

weights, respectively, and the elements of  ζ  denote m  error variables. 

The 1t   vector, z , consisting of all the variables of the extended LISREL model follows as 

 

 
 
 
 
 

=  
 
 
 
 
 

y

x

η

z ξ

ε

δ

ζ

 

The model for the relationships between all the variables of the extended LISREL model may then be expressed as 

t t e= + +z α B z z  

where 

 

y

x

t

 
 
 
 
 

=  
 
 
 
 
 

τ

τ

α

α 0

0

0

0

 

and 
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y

x

y p

x p

m

t



 
 
 
 
 
 =
 
 
 
 
 
 

0 0 Λ 0 I 0 0

0 0 0 Λ 0 I 0

0 0 B Γ 0 0 I

B 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

  

where nI denotes the n n  identity matrix and 

 
e

 
 
 
 
 

=  
 
 
 
 
 

0

0

0

z ξ

ε

δ

ζ

  

The mean vector, tκ , of ez is given by 

 
t

 
 
 
 
 

=  
 
 
 
 
 

0

0

0

κ κ

0

0

0

  

The mean vector, tμ , of tz follows as 

 ( ) ( ) ( )
1

t t t t t t t t

−
= − + = +μ I B α κ Λ α κ   

where ( )
1

t t t

−
= −Λ I B . The covariance matrix, tΦ , of ez follows as 

 
t

 

 

 
 
 
 
 

=  
 
 
 
 
 

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Φ 0 0 0 Φ 0 0 0

0 0 0 0 Θ Θ 0

0 0 0 0 Θ Θ 0

0 0 0 0 0 0 Ψ
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where Φ , Θ , Θ , and Ψ  denote the covariance matrices of ξ , ε , δ , and ζ , respectively and  
=Θ Θ denotes the 

covariance matrix between ε  and δ . The t t  covariance matrix of z , t , may then be expressed as 

 ( ) ( )
1 1

t t t t t t t t t

− −   = − − =I B Φ I B ΛΦ Λ  

The ( ) ( )p m p m+  +  covariance matrix,  , of the 
y xp p p= + observed variables and m m m = + latent variables, 

follows as 

 ( ) ( )
1 1

p m t t t t t p m t

− −

+ +

     = − − =   I 0 I B Φ I B I 0 ΛΦ Λ   

whereΛ denotes the ( )p m t+   matrix consisting of the first p m+  rows of tΛ . The 1p  mean vector, μ ,  and the 

p p  covariance matrix, Σ , of the p  observed variables may be expressed as 

 
p t=μ Λ μ   

and 

 
p t p

=Σ Λ Φ Λ   

where
pΛ  denotes the p t  matrix consisting of the first p  rows of tΛ . 

 

Gauss-Newton algorithm 

Suppose that the elements of θ  consist of the q  unknown parameters of the extended LISREL model and that ( )f   denotes 

the discrepancy function to be minimized with respect to the elements of θ . If 
( )ˆ t
θ  denotes the 

tht  successive approximation 

to the estimators θ̂ , then the 
st( 1)t +  approximation (Browne and du Toit, 1992) is obtained from 

 
( ) ( ) ( )( ) ( )( )1 1ˆ ˆ ˆ ˆt t t t

t
+ −= −θ θ H θ g θ   

where ( )g  denotes the gradient vector of ( )f  , ( )H  denotes the approximate Hessian matrix of ( )f  ,  and t  denotes 

a selected step-size parameter (Browne and du Toit 1992) to ensure that ( ) ( )( 1) ( )t tf f+ θ θ  with 1t =  in most cases. 

The maximum absolute residual cosine is the maximum absolute value of 

 
( )( ) ( )( ) ( )( )ˆ ˆ ˆ 1,2, ,
t t t

i ii

f i q     =
   
g θ H θ θ   

Iteration is terminated when the maximum absolute residual cosine falls below the tolerance limit of 
410rc
−=  (Browne 

and du Toit 1992). After convergence, estimated standard errors of the estimators are computed as the positive square roots 

of the diagonal elements of the matrix 
( )( )11 ˆ

1

t

n

−

−
H θ  where n  denotes the sample size. 

If the data distribution of the continuous observed variables is assumed to be a multivariate Normal distribution, typical 

elements of the gradient vector and the approximate Hessian matrix may be expressed as 

   ( )2 ' ( ) ( ) ( )k k kk
  = − +g α b c Ωd   
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and 

   ( )2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )k l k l k l k l k lkl
             = + +H b b c c d d c d d c   

where 

 ( )1 2

p t

−= −α V x Λ μ   

and 

 ( )1 2 1 2

p t t

− − = −Ω V S Λ Φ Λ V   

where x  and S  denote the sample mean vector and sample covariance matrix, respectively, ( ) 
1

ˆ
−

=V Σ θ  for maximum 

likelihood estimation, 
1−=V S  for generalized least squares estimation, and 

p=V I  for unweighted least squares 

estimation and  

 ( )

1 2

.

1 2

. .

if  denotes an intercept

if  denotes a regression weight 

if  denotes a variance or covariance

p ki

k p p t ki j

k



 



−

−

   



   =     



V Λ

b V Λ Λ α

0

  

and 

 ( )

( )

1 2

.

1
1 2

.

if  denotes an intercept

if  denotes a regression weight 

1 if  denotes a variance or covariance

k

k p ki

ij p ki



 



−

−
−





 =   

  +   

0

c V Λ

V Λ

  

and 

 ( ) 1 2

.

1 2

.

if  denotes an intercept

if  denotes a regression weight 

if  denotes a variance or covariance

k

k p kj

p kj



 



−

−





 =   


   

0

d V

V Λ

  

where 
pΛ  and 

p  contain the first p  rows of Λ  and  , respectively, i  and j  denote the row and column of the 

parameter of the extended LISREL model, respectively,  
.i

A  denotes the 
thi row of the matrix A ,  

. j
A  denotes the 

thj

column of the matrix A , and 
ij  denotes the Kronecker delta. 

If the data distribution of the continuous observed variables is a multivariate distribution with finite eight-order moments, 

the gradient vector, and the approximate Hessian matrix (Browne and du Toit 1992) of the weighted least squares 

(distribution free) discrepancy function 

 ( ) ( )( ) ( )( ) ( )( ) ( )( )1 1f − − = − − + − −θ x μ θ Σ x μ θ s σ θ W s σ θ   
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are given by 

 ( ) ( )( ) ( )( )1 1

 

− − = − − − −g θ Δ Σ x μ θ Δ W s σ θ   

and 

 ( ) 1 1

   

− − = +H θ Δ Σ Δ Δ W Δ   

where W  is a weight matrix with typical elements (Browne 1984) given by 

 
,ij kl ijkl ij klw w w w= −   

Δ  is the Jacobian matrix of ( )μ θ  with respect to θ , Δ  is the Jacobian matrix of ( )σ θ  with respect to θ , and  

 ( ) ( )( )( )
1

1 n

ijkl im i jm j km k lm l

m

w x x x x x x x x
n =

= − − − −   

 ( )( )
1

1 n

ij im i jm j

m

w x x x x
n =

= − −   

where  

 
1

1 n

i im

m

x x
n =

=    

  

Multiple groups 

Suppose that the elements of θ  consist of the q  unknown parameters of the extended LISREL model for G  independent 

populations. In this case, the discrepancy function to be minimized with respect to the elements of θ  may be expressed as 

 ( ) ( )
1

1G
g

g

g

n
f f

n G=

−
=

−
θ θ   

where 
gn  denotes the sample size for population g , n  denotes the total sample size, and ( )gf   denotes the discrepancy 

function for population g . 

The gradient vector and approximate Hessian matrix follow as   

 ( ) ( )
1

1G
g

g

g

n

n G=

−
=

−
g θ g θ  

and 

 ( ) ( )
1

1G
g

g

g

n

n G=

−
=

−
H θ H θ  

where ( )g g  and  ( )g H  denote the gradient vector and approximate Hessian matrix of ( )gf  .  
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4.2 Measurement model with intercepts using student data 

The data are the complete simulated scores of 815 students on six psychological tests (visual perception, cubes, lozenges, 

paragraph completion, sentence completion, and word meaning) along with the gender of the students. The corresponding 

data file is GENDERC.LSF, and the first few observations are shown below. 

 

The theoretical model is a measurement model with intercepts that specifies that the six psychological tests are indicators 

of visual ability and verbal ability of Junior High students. A path diagram for this model is depicted in the image below. 

 

The SIMPLIS syntax file to assess the configural invariance of the measurement model above with intercepts for gender is 

shown in the image below. 

visperc

cubes

lozenges

paragraf

sentenc

wordmean

Visual

Verbal
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• Line 1 specifies the label for the first group. 

• Line 2 specifies the grouping variable. 

• Line 3 specifies the data file. 

• Line 4 specifies the labels for the latent variables of the model. 

• Lines 5 to 9 specify the theoretical model for the first group. 

• Line 10 specifies the label for the second group. 

• Line 11 specifies the data file. 

• Line 12 specifies the labels for the latent variables of the model. 

• Lines 13 to 21 specify the theoretical model for group 2. 

• Line 22 requests the Gauss-Newton algorithm instead of the Fletcher-Powell algorithm for parameter estimation. 

• Line 23 requests a path diagram of the model. 

• Line 24 indicates that no more SIMPLIS commands are to be processed. 

  
If this SPL file is opened in LISREL and the Run LISREL icon is clicked, the following path diagram is obtained. 
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The Chi-square results above imply that the configural invariance of the measurement model with intercepts for boys and 

girls is supported by the data. The corresponding output file, GENDERCMS.OUT, is opened in a separate window. The 

estimated measurement equations for boys and girls, which are listed in this file, are shown in the images below. 

 

 

 

 

32.97

16.90

29.24

2.66

6.47

17.04

14.92

7.49

visperc

cubes

lozenges

paragraf

sentenc

wordmean

VisualAb

ility

VerbalAb

ility

1.00

0.47

1.73

1.00

1.24

2.40

7.14

Chi-Square=12.40, df=16, P-value=0.71592, RMSEA=0.000
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