New Features in LISREL

Several special features and improvements are available in LISREL. Observed and latent variable names of up to sixteen
characters are permitted and path diagram files can be exported as enhanced metafiles which can be imported into other
documents. HTML tables for the various results of single group LISREL models are provided in the form of a HTML file.
The iterative estimation algorithm for the parameters of LISREL models, which uses adaptive quadrature, has been
improved. The multilevel generalized linear modeling application includes more link functions and computes estimates of
the intra-class correlation coefficients.

LISREL also includes several new statistical methods. More specifically, two-stage multiple imputation Structural Equation
Modeling (SEM) for continuous, ordinal, and a mixture of continuous and ordinal variables, confidence interval estimates
for the parameters of LISREL models, and standard error estimates and confidence interval estimates for standardized and
completely standardized solutions are implemented. In addition, an alternative iterative estimation algorithm for the
parameters of the general LISREL model and the extended LISREL model is available.

The technical details along with illustrative examples for two-stage multiple imputation SEM are provided in section 1.
Section 2 contains the statistical theory for standard error and confidence interval estimates for the parameters of LISREL
models and includes an illustrative example. In section 3, the estimation theory for estimating the parameters of single group
LISREL models with variance constraints for the endogenous latent variables is provided and demonstrated. The Gauss-
Newton algorithm for estimating the parameters of the extended LISREL model is described and illustrated in section 4.
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1. Two stage multiple imputation SEM
1.1 Continuous variables
Moment matrices

Suppose that the rows of X(nx p) are n observations of p continuous variables X, X,, ..., X, with mean vector p and

covariance matrix X . The sample covariance matrix, S, is an unbiased estimator of £ and may be expressed as

where X; and X denote observation i and the sample mean vector of X = [xl X, .o X, } , respectively. A typical element

of a consistent estimator, U, of the asymptotic covariance matrix, Y, of the sample variances and covariances (Browne
1984) is given by

U g = Wijg — Wi W

where
Wiy = nlmnzl(xIm —Z)(ij —X, )(ka X ) (X — %)
and
W, = nlmi_l(xim %) (X = %;)
where

The robust ML, DWLS, WLS, and ULS methods can be used to fit structural equation models for continuous variables to the
sample covariance matrix by using the estimated asymptotic covariance matrix of the sample variances and covariances.

is the covariance matrix of the standardized variables z,,z,, ...,z where

The correlation matrix, P , of X, X,,..., X o

p
P=DXD;
and

_X 4

O;

Z

where D denotes a diagonal matrix with the standard deviations o;,0,,..., o, of X,%,,..., X, on the diagonal. The

sample correlation matrix, R, is an unbiased estimator of P and may be expressed as

R=D,/RD/



where D denotes a diagonal matrix with the sample standard deviations s, s,, ..., S, of X,%,,..., X, on the diagonal. A

typical element of a consistent estimator, U , of the asymptotic covariance matrix, Y, of the sample correlations (Steiger
and Hakstian 1982) is given by

1 1 1
uij,kl = rijkl +Z rij M (riikk + rjjkk + Gy + rjjll )_E rij (riikl + rjjkl )_Erm (rijkk + rijll)

where
-1 n
fija = (n _1) z ZinZimZimZim
m=1
and
-1 n
=(n-1)" > 7,2,
m=1
and
7 = Xim — X
im — S

The robust DWLS, WLS, and ULS methods can be used to fit structural equation models for continuous variables to the
sample correlation matrix by using the estimated asymptotic covariance matrix of the sample correlations.

Multiple imputation

The MCMC method
Suppose now that the n observations of the p continuous variables include missing data values with k missing data value
patterns and that the joint distribution of the variables is a multivariate normal distribution with mean vector p and

covariance matrix X. The EM algorithm and the MCMC method for multiple imputation of incomplete data can be used to
impute the missing data values of the continuous variables.

Suppose that X, denote the observed data values. The EM algorithm (Dempster, Laird, and Rubin 1977) can be used to
compute the maximum likelihood estimate of X . The minus two observed-data log likelihood may be expressed as

—2InL(Z[X,) = Zni In|2i|+Zi(Xoij il )'Efl(xoij _l‘i)

i=1 j=1
where n, denotes the number of observations of missing data value pattern i=1,2,...,k, X, denotes the population
covariance matrix of missing data value pattern i, p; denotes the mean vector of missing data value pattern i, and X; is

the jth vector of observed values of missing data value pattern i.

The initial estimate for the M-step is the sample covariance matrix, S , of the complete data or | o ifthe number of complete
observations is too small. In the E-step, the conditional covariance matrices of the missing variables given the observed

variables of the missing data value patterns are computed and used to compute an updated estimate 2D of X Iteration
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of the consecutive M and E steps is terminated when the absolute difference between £V and £ is below the tolerance
limit & = 1075,

The EM estimate, X, of X is used as the initial covariance matrix of the multivariate normal distribution in the first step
of the Monte Carlo Markov Chain (MCMC) method. In the first step (P-step) of the MCMC method, an estimate of X is
simulated from an inverse Wishart distribution. In the I-step, observations are simulated from the conditional normal
distributions of the missing variables given the observed k missing data value patterns and used to replace the missing data

values. The next estimate of X is then obtained by computing the sample covariance matrix of the completed data. The P
and | steps are repeated for a fixed number of times.

The FCS regression method

Suppose now that the n observations of the p continuous variables include missing data values and that a joint (multivariate)
distribution of the variables exists. In this case, the Fully Conditional Specified (FCS) regression method (Brand 1999; Van
Buuren 2007) can be used to impute the missing data values. The FCS regression method performs a fixed number of
imputations to impute the missing data values. Each imputation consists of a filled-in phase and an imputation phase. In the
filled-in phase, the missing data values are filled-in by using a sequence of regression analyses for the p continuous
variables. These filled-in data are then used as the initial data for the imputation phase in which the missing data values are
imputed by using a sequence of regression analyses for the p continuous variables. These imputed data are then used as the
initial data for the next iteration of the imputation phase and a fixed number of iterations are executed for each imputation.

The filled-in stage fits the following p regression models sequentially to the data, namely

X = ﬁlo +€
X, = :820 + ﬂ21X1 +€,
X3 = ﬂso + ,331)(1 + ﬂszxz +€

Xp :ﬂpo +:Bplxl+ﬂp2X2 +”'+ﬂp,pflxp—1+ep

where the elements of B = [,810 B B ] denote unknown regression weights and €,, €,, ..., €, are p error variables.

p,p-1
The first model is fitted to the complete data for X, . The corresponding estimates are then used to simulate new parameter
values from the posterior distributions of the parameters which in turn is used to fill-in the missing data values for X, . The
second model is then fitted to the complete data for X, and the filled-in data for X, . The final model is fitted to the complete
data for X, and the filled-in data for x, X,, ..., Xy 1- The filled-in data for X, X,, ..., X, are used for the first iteration of

the imputation phase. The simulation of the new parameter values from the posterior distributions of the parameters and the
imputation of the missing data values for each of the p regression models use the same steps as outlined next for each
iteration of the imputation stage.

For each iteration of the imputation stage, the following regression models are fitted sequentially either to the filled-in data
or the imputed data, namely

Xj = fo+ BXy+ 4 PBiXiy + BiaXpn ++ BX, €



where j =1,2,...,p, the elements of B, :[ﬂo o ...ﬁj_lﬂj+1...,8p] denote p unknown regression weights, and e;

denotes an error variable with variance ajz . The estimated covariance matrix of the estimator B ; of B, may be expressed

as
UJZVJ (XEJ)X(j))il

where X ;, denotes rows 1,2,..., j—=1, j,..., p of the filled-in or imputed data. New values for the parameters are then
simulated from their posterior distributions as

0 2% 7!
Bjt :ﬁj+0tjvhjz
A2
2O (nj—p)
oy
Cc

where V,; denotes the upper triangular matrix in the Cholesky decomposition of V,; = Vr:thj , Zdenotes a px1 standard

normal vector, and ¢ is a Chi-square variable with n; — p degrees of freedom. The missing data values are then imputed as
’
Xii =Bjtxi(j) +0yZ

where X, denotes a missing data value in row i and column j of X, X; ;, denotes row i of X ), and z is a standard normal

i(J) (-

variable.

Average unstandardized moment matrices

Suppose that X;, X,,..., X, are m imputed data sets for the incomplete data matrix, X, of the p continuous variables

m

X Xpyoees X, and that S,,S,,...,S,, and U;,U,,...,U_ denote the corresponding sample covariance matrices and the

m

estimated asymptotic covariance matrices of the variances and covariances, respectively. Then, the average sample
covariance matrix is

Chung and Cai (2019) point out that U only captures uncertainty based on complete data. As a result, its inverse cannot be
used as a weight matrix for the robust ML, DWLS, WLS, and ULS methods for continuous structural equational modeling.
A corrected weight matrix is obtained by correcting for the between-imputation variation in the estimated variances and
covariances and is obtained as the inverse of

Ny m+1 { )r}
m(m 1) i=1

Ms



where s denotes the p x( p +l) / 2 vector consisting of the nonduplicated elements of the p x p symmetric matrixS. S and

Y can be used to fit structural equation models to the average sample covariance matrix with the robust ML, DWLS, WLS,
and ULS methods. The corrected robust DWLS and ULS Chi-square test statistic proposed by Chung and Cai (2019) is given
by

Ty = (N-1)(s—a(0)) V(s —(6))
where
V=Y"-YTANA)TAYT?
where A denotes the Jacobian matrix of &(0) with respect to the unknown parameters  of the structural equation model

evaluated at @ =0. The small sample adjusted T, test statistic (Yuan and Bentler 1997) is given by

TB
Te=——
1+nT; /(n-1)

Average standardized moment matrices

Suppose that X,, X,,..., X, are m imputed data sets for the incomplete data matrix, X, of the p continuous variables
Xpy Xy eees X, andthat R;,R,,...,R,, and U,U,,...,U_ denote the corresponding sample correlation matrices and the

estimated asymptotic covariance matrices of the sample correlations, respectively. Then, the average sample correlation
matrix is

_ o1&
R==>R
and the average estimated asymptotic covariance matrix is

_ 1@

U==->»U.

m ,Z:l: '

Chung and Cai (2019) point out that U only captures uncertainty based on complete data. As a result, its inverse cannot be
used as a weight matrix for the robust DWLS, WLS, and ULS methods for continuous structural equational modeling for
correlation matrices. A corrected weight matrix is obtained by correcting for the between-imputation variation in the
estimated correlations and is obtained as the inverse of

Y- D+%{i(ﬁ =7)(r —F)'}

where r denotes the px( p—1)/2 vector consisting of the nondiagonal and the nonduplicated elements of the px p

symmetric matrix R . R and Y can be used to fit structural equation models to the average sample correlation matrix with
the robust DWLS, WLS, and ULS methods. The corrected robust DWLS and ULS Chi-square test statistic proposed by Chung
and Cai (2019) is given by

Ty = (N=1)(r —p(8))'V(r—p(6))



where
V=Y1-TIAAA) AT
where A denotes the Jacobian matrix of p(0) with respect to the unknown parameters 0 of the structural equation model

evaluated at @ =0. The small sample adjusted T, test statistic (Yuan and Bentler 1997) is given by

TB
T =
1+nT,/(n-1)

1.2 Ordinal variables
Polychoric Correlations

Suppose that the rows of X(nx p) are n observations of p ordinal variables X, X,, ..., X, with m,m,, ..., m, categories,

respectively. Suppose further that these p ordinal variables are the result of the discretization of the underlying p continuous

standard normal variables z,,z,,..., z, as such that z:[zl Z, ... zp] ~N(0,P) and
=1 ifr,<z <ty
X, =2 if r, <z, <7,
=m ifz ,<z<7,

where P denotes the population correlation matrix of z and —o=7,, <7, <7,...<7;

i,m;

=oo are parameters known as

thresholds. The model for the univariate marginal of variable X; is

Ty = J::_l $(u)du

where ¢(.) denotes the probability density function of the standard normal distribution. The maximum likelihood estimator
of 7, (Joreskog, 1994) is given by

T :®71(pi1+ Py +eeat Py

where @ () denotes the inverse of the cumulative distribution function of the standard normal distribution and
Pis Py --» Py, denote the marginal sample proportions for X; .

The polychoric correlation matrix, R, is a consistent estimator of the population correlation matrix P. The model for the
bivariate marginal of variables X; and x; is

Ty = LL J'::l ¢,(u, Vv, p;)dudv

where ¢,(u, v, p; ) denotes the probability density function of the bivariate standard normal distribution with correlation

p;; - The maximization of the bivariate likelihood function is equivalent to minimization of the discrepancy function



3

m;
i

F(pij,%i,‘i' ) ZJ:p.jk|('n{pijkl}_ln{”iikl})

1 1=1

=~
1

where 7; and T; denote the maximum likelihood estimators of the m; —1 and m, —1 thresholds of variables X; and X;,

respectively and py, is the sample proportion for x; = k and X; =1.Thegradient of F () (Olsson 1979) may be expressed
as

& Pija | O
g p|’ I’
( : ) kzlé Tij |: apu
where (Olsson 1979)
a”ijkl

a,Oij

:¢z( Tir T ) ¢2( |k—l’TjI)_¢2(Ti,k'z-j,l—l)+¢2(Ti,k—l’rj,l—l)

where ¢, () denotes the density function of the bivariate standard normal distribution with correlation p; . The information

(,D ) a”ukl 1 a”ijld
i aPij T aloij

The Fisher scoring algorithm is used to minimize F () with respect to p; . Let0 = p; . If 9 denotes the ¢t successive

(Joreskog, 1994) is given by

approximation to é, then the (t+1)* approximation is obtained from

oo _ po 9 ('Dii’%i’%J)
i(pij,%i,%,—)

Iteration is terminated when the absolute gradient value is below the tolerance limit &= 1073,

The asymptotic covariance matrix, Y, ofthe p* = p(p—1)/2 polychoric correlationsisa p (p~ +1)/2 matrix. Atypical

element of Y (Joreskog, 1994) may be expressed as

u rs z urs}/uklyrsno a)kl

1 . . m; m;
where «, . =— if Xx;=k, x,=I, X,=n, and X,=0 and 0 otherwise, a),jzzk:lzlz'lyijklﬂijk,,

cijrs n Cl CJ
@, —Z . _17,5n0 rsno » @Nd ;5 denotes a typical element of
T =a; +Bi|3i1’j +1i|3'jB'j

where 1. denotes an m, x1 column vector and



B, =(AD;A) AD}
B, =(A\D;A;) AD;

where A, denotes the m, x(m, —1) matrix given by

[ (r) O 0
A = _¢(:le) ¢(Tzk) O
0 0 0 —h(ryui]

Typical elements of @, B;, and B, are given by

or.:
Qg = D_li Biw
Tija 0P
S Oy
BI = ai' ( J ]
[ ]k k:lIZ:l: ki 8Tik
m 0 or,
[BJI = zaijkl[ p JKIJ
k=1 11 i

where

The robust DWLS, WLS, or ULS methods can be used to fit structural equation models for ordinal variables to the polychoric
correlation matrix by using the estimated asymptotic covariance matrix of the polychoric correlations (Chung and Cai
(2019)).

Multiple Imputation

The MCMC method

Suppose now that the n observations of the p ordinal variables include missing data values with k missing data value
patterns. The EM algorithm and the MCMC method for multiple imputation of incomplete data are intended for continuous
variables and cannot readily be applied to ordinal variables. However, they can be applied to the underlying continuous

variables z,,z,,..., Z, associated with the ordinal variables X, X,, ..., X,- Although no observations for these continuous

variables are available, these variables are assumed to have a multivariate standard normal distribution with a population
covariance matrix X . As a result, we can simulate data from this distribution by using the polychoric correlation matrix of
the complete data of the variables if the number of complete cases is large enough and use either the EM algorithm or the
MCMC algorithm to impute the missing data values for the underlying continuous variables. After imputation, the estimated
thresholds can be used to replace the missing data values for the corresponding ordinal variables by using the relationship
between the ordinal variables, the underlying continuous variables, and the thresholds.
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Suppose that the rows of Z(nx p) are n observations of the p underlying continuous variables z,,z,, ..., z, simulated

from the N (0, X) distribution and that Z, denotes the observed data values that corresponds with the observed data values

of X. The EM algorithm (Dempster, Laird, and Rubin 1977) can be used to compute the maximum likelihood estimate of
X . The minus two observed-data log likelihood may be expressed as

-2InL(Z|Z,) = Ek:ni In |zi|+zk:iz;”>:;lzou
i=1

-1 j=1

where n, denotes the number of observations of missing data value pattern i = 1,2,---,k, X, denotes the population
covariance matrix for missing data value pattern i, and z; is the j th vector of observed values of missing data value pattern

i.

The initial estimate for the M-step is the sample covariance matrix, S, of the complete data or | o if the number of complete
observations is too small. In the E-step, the conditional covariance matrices of the missing variables given the observed
variables for the missing data value patterns are computed and used to compute an updated estimate, 2D of ¥ Iteration

of the consecutive M and E steps is terminated when the absolute difference between D and £© is below the tolerance
limit & = 107°.

The correlation matrix of the EM estimate, X, of X is used as the initial covariance matrix of the multivariate standard
normal distribution in the first step of the Monte Carlo Markov Chain (MCMC) method. In the first step (P-step) of the
MCMC method, an estimate of X is simulated form an inverse Wishart distribution. In the I-step, observations are simulated
from the conditional standard normal distributions of the missing variables given the observed k missing data value patterns
and used to replace the missing data values. The next estimate of X is then obtained by computing the sample correlation
matrix of the completed data. The P and | steps are repeated for a fixed number of times.

Let the rows of Z, :(nxp) contain the observed and the imputed data values for the standard normal variables
2,250y 2, The observed data for the ordinal variables are obtained from the corresponding observed data values of X.

The missing data values of X are then replaced by the values obtained from the corresponding imputed data values of Z and
the estimated thresholds by using the relationship between the ordinal variables, the underlying continuous variables, and
the thresholds.

The FCS ordinal logistic regression method

Suppose now that the n observations of the p ordinal variables include missing data values and that a joint (multivariate)
distribution of the variables exists. In this case, the Fully Conditional Specified (FCS) ordinal logistic regression method
(Brand 1999; Van Buuren 2007) can be used to impute the missing data values. The FCS ordinal logistic regression method
performs a fixed number of imputations to impute the missing data values. Each imputation consists of a filled-in phase and
an imputation phase. In the filled-in phase, the missing data values are filled-in by using a sequence of ordinal logistic
regression analyses for the p ordinal variables. These filled-in data are then used as the initial data for the imputation phase
in which the missing data values are imputed by using a sequence of ordinal logistic regression analyses for the p ordinal
variables. These imputed data are then used as the initial data for the next iteration of the imputation phase and a fixed
number of iterations are executed for each imputation.

11



The filled-in stage fits the following p ordinal logistic regression models sequentially to the data, namely
logit(7,, ) = a
logit(7,, ) =y + BuX
logit(7, ) = g + LoXy + L%,

IOgit(ﬂpk) = OCpk +ﬂp1X1 +ﬂp2X2 +ee +ﬂp,p—lxp—l
where Ty = PO <KX %000 X1 logit(z, ) = In(z; ) - In(7rimj ), and the elements of

Y= [0511 Ao for - ﬂp’p_l] denote unknown regression weights. The first model is fitted to the complete data for X, .

The corresponding estimates are then used to simulate new parameter values from the posterior distribution of the
parameters which in turn is used to fill-in the missing data values for X, . The second model is then fitted to the complete

data for X, and the filled-in data for X, . The final model is fitted to the complete data for x; and the filled-in data for

Xpy Xgyeeey X g The filled-in data for x, X,, ..., X, are used for the first iteration of the imputation phase. The simulation

of the new parameter values from the posterior distribution of the parameters and the imputation of the missing data values
for each of the p ordinal logistic regression models use the same steps as outlined next for each iteration of the imputation
stage.

For each iteration of the imputation stage, the following ordinal logistic regression models are fitted sequentially either to
the filled-in data or the imputed data, namely

logit(7y ) = & + BX ++--+ B Xy + BiaXpa -+ BpX,
where T = POG <KX, s X Xjg oo X)) logit(r;, ) = In(ﬂjk)—ln(ﬂimj), the elements of

yj:[al az...ami_lﬁl...ﬁj_lﬂj+l...ﬂp] denote p+m; -1 unknown regression weights, j=12,..,p, and

k=12,.., m; —1. Let Vj denote the estimated covariance matrix of the estimator 7 of Y-

New values for the parameters are then simulated from their posterior distribution as
Vi = 4 j +Vr:jZ

where Vr;j denotes the upper triangular matrix in the Cholesky decomposition of V; = Vr:thj ,and zisa (p+m; —1)x1
standard normal vector. These new parameter values are then used to compute the predicted cumulative probability 7%jk for
k=12,.., m; —1. A random uniform variable, U, between 0 and 1 is simulated and the missing data values for X; are

imputedas 1if u <z, askif 7;,, <u<z, andas m; if U2z,

Average moment matrices

Suppose that X, X,,..., X, are m imputed data sets for the incomplete data matrix, X, of the p ordinal variables

m

X, X5, .y X, andthat R, R,,...,R and U, U,,...,U  denote the corresponding polychoric correlation matrices and
12



the estimated asymptotic covariance matrices of the polychoric correlations, respectively. Then, the average polychoric
correlation matrix is

Chung and Cai (2019) point out that U only captures uncertainty based on complete data. As a result, its inverse cannot be
used as a weight matrix for the robust DWLS, WLS, and ULS methods for ordinal structural equational modeling. A corrected
weight matrix is obtained by correcting for the between-imputation variation in the estimated polychoric correlations and is
obtained as the inverse of

i=1

- U+%{i(n -7)(r _r)'}

where r denotes the p X (p — 1) /2 vector consisting of the nondiagonal and nonduplicated elements of the p X p symmetric

matrix R. Rand Y can be used to fit structural equation models to the average polychoric correlation matrix with the
robust DWLS, WLS, and ULS methods. The corrected robust DWLS and ULS Chi-square test statistic proposed by Chung
and Cai (2019) is given by

Te =(N-1)(T - p(0))'V(r - p(0))
where

V=""1-TAAA) AT

where A denotes the Jacobian matrix of p(0) with respect to the unknown parameters, 0, of the structural equation model

evaluated at  =0. The small sample adjusted T test statistic (Yuan and Bentler 1997) is given by

TB
o= —=
1+nT,; /(n-1)

1.3 Mixed variables

Correlations

Polychoric correlations
Suppose that the rows of X(nx p) are n observations of p ordinal variables X, X,, ..., X, with m;,m,, ..., m, categories,

respectively. Suppose further that these p ordinal variables are the result of the discretization of the underlying p continuous

standard normal variables z,,7,, ..., z, as such that z :[zl z, .. zp] ~N(0,P) and

13



=1 ifr,<z <t
X, =2 ifr, <z, <7,
X, =m, if Tim1<Z ST,

where P denotes the population correlation matrix of z and —o=17,, <7, <7,,...<7; , =00 are parameters known as

i,m;

thresholds. The model for the univariate marginal of variable X; is

= j $(u)du

where ¢(.) denotes the probability density function of the standard normal distribution. The maximum likelihood estimator
of 7, (Joreskog, 1994) is given by

7 :®71(pi1+ P+t Py)
where (D’l(.) denotes the inverse of the cumulative distribution function of the standard normal distribution and

Pis Py ooy Py, denote the marginal sample proportions for X; .

The polychoric correlation matrix, R, is a consistent estimator of the population correlation matrix P. The model for the
bivariate marginal of variables X; and x; is

T = L ; 1L| 1¢2 (u,v, pij)dudv

where ¢,(u, v, p; ) denotes the probability density function of the bivariate standard normal distribution with correlation

p;;- The maximization of the bivariate likelihood function is equivalent to minimization of the discrepancy function

m; J

(pu’ ) Zzpukl(ln{pukl} In { 'Jk'})

k=1 I=1

where 7; and T; denote the maximum likelihood estimators of the m; —1 and m, —1 thresholds of variables X; and X;,

respectively and py, is the sample proportion for x; = k and X; =1.Thegradient of F () (Olsson 1979) may be expressed

as

&< Pi | 07
g(p”, Tt ) k:1|2:1: T |: 0,0,] :l
where (Olsson 1979)
or;
a/OJkI =, (74,7 )~ ¢2( lk—l’TjI)_¢2(Ti,k'rjv|—1)+¢2 (Tivk—l’r“‘l)
ij

where ¢, () denotes the density function of the bivariate standard normal distribution with correlation p; . The information

(Joreskog, 1994) is given by

14



m;

m; 2
(o, %% = zi{aﬂijkl:l

k=1 1=1 7 8,Oij
The Fisher scoring algorithm is used to minimize F (-) with respect to p, . Letd = p; . If 9" denotes the ¢t successive
approximation to @, then the (t+1)" approximation is obtained from

9(py %.%;)

oD — 9 _ _
|(pij,1ri,'rj)

Iteration is terminated when the absolute gradient value is below the tolerance limit &= 1073,

Pearson product-moment correlations
Suppose that the rows of X(nx p) are n observations of p continuous variables X, X,, ..., X, with mean vector p and

covariance matrix X . The sample covariance matrix, S, is an unbiased estimator of £ and may be expressed as

where X, and X denote observation i and the sample mean vector of X = [xl Xy .o X, ]’ , respectively.

The correlation matrix, P, of x,X,, ..., X, is the covariance matrix of the standardized variables z,z,, ..., z, where
P=D'XD’

and

_X 4
o

Z.

where D denotes a diagonal matrix with the standard deviations o;,0,,..., o, of X,X%,,..., X, on the diagonal. The

sample correlation matrix, R, which contains the Pearson product-moment correlations (Pearson 1896), is an unbiased
estimator of P and may be expressed as

R=D,RD/

where D, denotes a diagonal matrix with the sample standard deviations s,,s,, ..., S, of X, %y, ..., X, on the diagonal.

Polyserial correlations
Suppose that the rows of X(nx p):[X0 Xc] are n observations of p, ordinal variables X;,X,,..., X, with

m,m,...,m, categories, respectively and p. continuous variables X, X,, ..., X,, s such that p,+ p, = p . Suppose

further that the p, ordinal variables are the result of the discretization of the underlying p, continuous standard normal

variables z,,7,,...,z, assuch that z=[z1 z, ... zpD] ~N(0,P,) and

15



X, =m, if Tim1<Z ST,

<t _ =ooare parameters known as

= ‘i,m

where P, denotes the population correlation matrix of z and —o=17,, <7, <7,...

thresholds. The model for the univariate marginal of variable X; is
mo=[" $u)du
Tik-1
where ¢(.) denotes the probability density function of the standard normal distribution. The maximum likelihood estimator
of 7, (Joreskog, 1994) is given by
G =D (P + Pip oo+ Py
where @ () denotes the inverse of the cumulative distribution function of the standard normal distribution and
Pu, Pizs ---» Py, denote the marginal sample proportions for X; .

If X; denotes the i-th ordinal variable and X; denotes the j-th continuous variable with mean x; and standard deviation o,

and p; is the polyserial correlation of x; and X;, the corresponding bivariate log-likelihood function (Olsson, Drasgow,

and Dorans 1982) is given by
n

A A C . 1
I(pij7Tiuujij)=;In(ﬂ'ikjm)—g[ln(27[)+|n|:0'j}]—aézjzm

where
Xim — H;

jm

Q>

and
Tijm = P (T;jm ) @ (T:k—l,jm )

where k denotes the observed category of x., @ denotes the cumulative distribution function of the standard normal

distribution, and
* Ty = PiLim

Tikim = ,—1_105

The maximization of the log-likelihood function is equivalent to minimizing the following discrepancy function

|
|
g
5
—_
RS
\7_5
~—

F(pij'%i’f‘j’6j)

The gradient of F (.) follows as



“’A.’A.’A. = — ﬂ
g(p“ T GJ) mz;ﬂ'ikjm op;

n 1 O

where (Olsson, Drasgow, and Dorans 1982)

O iim 2 % * A * A
ﬁ =(1- Bij ) |:¢(Tikjm )(Tikpij Ly ) - ¢(Ti,k-1,jm )(Ti,k—lpij —Zjn ):|

ij

where ¢ denotes the probability density function of the standard normal distribution. The information follows as

2
. A A A — aﬂ-i jm
I(pij’Ti’ﬂj’o-j):ﬂikaml: 8,0kj i|
ij

The Fisher scoring algorithm is used to minimize F (-) with respectto p,. Let 0= p, . If 9" denotes the t" successive
approximation toé, then the (t+1)* approximation is obtained from

(t)_g('oij’%i”&j’&j)

b =6 |
i(pij'%i1[ljl&j)

Iteration is terminated when the absolute gradient value is below the tolerance limit &= 1073,

Mixed correlation and asymptotic covariance matrices

Suppose that the rows of X(nx p)=[X, X.] are n observations of p, ordinal variables X Xy, eey X, With

m,m,,...,m, categories, respectively and p. continuous variables Xx,X,,..., X, as such that p,+p,=p. Let

Pe
R, (p, x p,) denote the polychoric correlation matrix of the p,, ordinal variables, R_(p, x p,.) denote the Pearson product-

moment correlation matrix of the p. continuous variables Xx,X,,..., X, , and R_.(p,x p.) denote the polyserial

Pe
correlation matrix of the ordinal and continuous variables. The correlation matrix, R, of the ordinal and continuous
variables may then be expressed as
R — |: R0 ROC:|
R, R

c

If F; denotes the discrepancy function which is minimized with respect to p; to obtain the maximum likelihood estimate
of p;, then the asymptotic covariance matrix, Y, of the polychoric, polyserial, and Pearson product-moment correlations

(Muthen 1984) may be approximated by the matrix, U, with typical element given by
1 n
Uju =N Zgijmgklm
m=1
where g, denotes the gradient of F; for observation mevaluated at p; =r; . If r; is a polychoric correlation, this gradient

is given by
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1
Oijm = [¢2( Tik» T ) ¢2( Tik-1 T )_¢2 (Ti,k'Tj,|—1)+¢2 (Ti,k—l’fj,l—l):|
ijki
where ¢, () denotes the density function of the bivariate standard normal distribution with correlation p; and k and |

denote the observed category of X; and x; for observation m, respectively. In the case of a Pearson product-moment
correlation, the gradient for observation m may be expressed as

(12 )r+zzr —r

im<jm'ij ij
@_ﬁ)

If r; denotes the polyserial correlation of ordinal variable X; and continuous variable X;, the gradient for observation m

|m Jm

gijm -

is given by
¢(Tik)(7ikrij _ij)_¢(7i k 1)(Ti,k—1rij _ij)
(1-%)

where ¢ denotes the probability density function of the standard normal distribution andk denotes the observed category
of X;.

Qijm =

Multiple Imputation

The MCMC method

Suppose now that the n observations of the p, ordinal variables include missing data values with k, missing data value
patterns. The EM algorithm and the MCMC method for multiple imputation of incomplete data are intended for continuous
variables and cannot readily be applied to ordinal variables. However, they can be applied to the underlying continuous

variables z,,z,, ..., z, associated with the ordinal variables x,X,, ..., X, - Although no observations for these continuous

variables are available, these variables are assumed to have a multivariate standard normal distribution with a population
covariance matrix X, . As a result, we can simulate data from this distribution by using the polychoric correlation matrix of

the complete data of the variables if the number of complete cases is large enough and use either the EM algorithm or the
MCMC algorithm to impute the missing data values for the underlying continuous variables. After imputation, the estimated
thresholds can be used to replace the missing data values for the corresponding ordinal variables by using the relationship
between the ordinal variables, the underlying continuous variables, and the thresholds.

Suppose that the rows of Z(nx p,) are n observations of the p, underlying continuous variables z,,z,, ..., z, simulated

from the N(0O,X,) distribution and that Z, denotes the observed data values that corresponds with the observed data

values of X,. The EM algorithm (Dempster, Laird, and Rubin 1977) can be used to compute the maximum likelihood
estimate of X . The minus two observed-data log likelihood may be expressed as

2InL(Z, |Z,) = Zn |n|20,|+ZZzo., oi Zai

i=1l j=1
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where n, denotes the number of observations of missing data value pattern i = 1,2,---,k,, X denotes the population

covariance matrix for missing data value pattern i, and z; is the j th vector of observed values of missing data value pattern

i

The initial estimate for the M-step is the sample covariance matrix, Spo , of the complete ordinal data or | o, if the number
of complete observations is too small. In the E-step, the conditional covariance matrices of the missing variables given the
observed variables for the missing data value patterns are computed and used to compute an updated estimate, ig““ of X,

. Iteration of the consecutive M and E steps is terminated when the absolute difference between £ and £ is below the
tolerance limit & = 107>.

A

The correlation matrix of the EM estimate, X, of X is used as the initial covariance matrix of the multivariate standard

normal distribution in the first step of the Monte Carlo Markov Chain (MCMC) method. In the first step (P-step) of the
MCMC method, an estimate of X is simulated form an inverse Wishart distribution. In the I-step, observations are simulated

from the conditional standard normal distributions of the missing variables given the observed k missing data value patterns
and used to replace the missing data values. The next estimate of X is then obtained by computing the sample correlation

matrix of the completed data. The P and | steps are repeated for a fixed number of times.

Let the rows of Z,(nx p) contain the observed and the imputed data values for the standard normal variables
21,2y, 2y - The observed data for the ordinal variables are obtained from the corresponding observed data values of

X, . The missing data values of X_ are then replaced by the values obtained from the corresponding imputed data values

of Z and the estimated thresholds by using the relationship between the ordinal variables, the underlying continuous
variables, and the thresholds.

Suppose further that the n observations of the p. continuous variables include missing data values with k. missing data
value patterns and that the joint distribution of the variables is a multivariate normal distribution with mean vector p, and
covariance matrix X . The EM algorithm and the MCMC method for multiple imputation of incomplete data can be used to
impute the missing data values of the continuous variables.

Suppose that X_, denote the observed data values. The EM algorithm (Dempster, Laird, and Rubin 1977) can be used to

compute the maximum likelihood estimate of X . The minus two observed-data log likelihood may be expressed as

k ko ,
—2In L(Zc | Xco) = Z n; In |Eci | + ZZ(Xcoij — g ) 20;1 (Xcoij — g )
i=1

i=1 j=1

where n. denotes the number of observations of missing data value pattern i=1,2,...,k., X denotes the population

ey Ney

covariance matrix of missing data value pattern i, p denotes the mean vector of missing data value pattern i, and X_; is

coij

the jth vector of observed values of missing data value pattern i.
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The initial estimate for the M-step is the sample covariance matrix, S, , of the complete dataor 1, if the number of complete
observations is too small. In the E-step, the conditional covariance matrices of the missing variables given the observed
variables of the missing data value patterns are computed and used to compute an updated estimate )iﬁ“” of X, . Iteration

of the consecutive M and E steps is terminated when the absolute difference between )iﬁ“” and )if,” is below the tolerance
limit & = 107>,

The EM estimate, X, of X_ is used as the initial covariance matrix of the multivariate normal distribution in the first step
of the Monte Carlo Markov Chain (MCMC) method. In the first step (P-step) of the MCMC method, an estimate of X_ is

simulated from an inverse Wishart distribution. In the I-step, observations are simulated from the conditional normal
distributions of the missing variables given the observed k. missing data value patterns and used to replace the missing data

values. The next estimate of X_ is then obtained by computing the sample covariance matrix of the completed data. The P
and | steps are repeated for a fixed number of times.

The FCS ordinal logistic regression method
Suppose that the n observations of the p,ordinal variables include missing data values and that a joint (multivariate)

distribution of the variables exists. In this case, the Fully Conditional Specified (FCS) ordinal logistic regression method
(Brand 1999; Van Buuren 2007) can be used to impute the missing data values. The FCS ordinal logistic regression method
performs a fixed number of imputations to impute the missing data values. Each imputation consists of a filled-in phase and
an imputation phase. In the filled-in phase, the missing data values are filled-in by using a sequence of ordinal logistic

regression analyses for the p, ordinal variables. These filled-in data are then used as the initial data for the imputation phase

in which the missing data values are imputed by using a sequence of ordinal logistic regression analyses for the p, ordinal

variables. These imputed data are then used as the initial data for the next iteration of the imputation phase and a fixed
number of iterations are executed for each imputation.

The filled-in stage fits the following p, ordinal logistic regression models sequentially to the data, namely

logit(z,, ) = oy,
logit(r,,) = oy + B X
logit(7y, ) = g + By X + BiX,

logit(r, ) = atpy + B X+ By X+ By o 1%
where Ty = P(X; <KX, X500 X ) logit(z;, ) = In(7z ) —In(7;y, ). and the elements of

Y= [0511 Ay Py - ,Hpmpo_l] denote unknown regression weights. The first model is fitted to the complete data for X .

The corresponding estimates are then used to simulate new parameter values from the posterior distribution of the
parameters which in turn is used to fill-in the missing data values for X . The second model is then fitted to the complete

data for X, and the filled-in data for X, . The final model is fitted to the complete data for X, and the filled-in data for
X Xpyeeen Xp g The filled-in data for x, X,, ..., X,, are used for the first iteration of the imputation phase. The simulation

of the new parameter values from the posterior distribution of the parameters and the imputation of the missing data values
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for each of the p ordinal logistic regression models use the same steps as outlined next for each iteration of the imputation
stage.

For each iteration of the imputation stage, the following ordinal logistic regression models are fitted sequentially either to
the filled-in data or the imputed data, namely

logit(7z, ) = o + BX +-+++ BiaXi s+ BiaXja ++ + B %,

where Ty = POG <K Xy oo X0y X oo X ) s logit(z; ) = In(ﬂjk)—ln(ﬁimj), the elements of

j+Lc

yj:[al Qo Oy 4 ﬂl...ﬁj_lﬂm...ﬁpj denote p,+m;—1 unknown regression weights, j=1,2,...,p,, and

k=12,..,m, —1. Let V, denote the estimated covariance matrix of the estimator ?J. of v;.

New values for the parameters are then simulated from their posterior distribution as

Vi = “?j +Vr:jz
where Vh’j denotes the upper triangular matrix in the Cholesky decomposition of V; = Vr:thj ,andzisa (p, +m; —1)x1
standard normal vector. These new parameter values are then used to compute the predicted cumulative probability 7%1.,( for
k=12,.., m; —1. A random uniform variable, U, between 0 and 1 is simulated and the missing data values for X; are

imputedas 1if u <z, askif 7;,, <u<z,andas m; if U2z,

The FCS regression method
Suppose now that the n observations of the p, continuous variables include missing data values and that a joint (multivariate)

distribution of the variables exists. In this case, the Fully Conditional Specified (FCS) regression method (Brand 1999; Van
Buuren 2007) can be used to impute the missing data values. The FCS regression method performs a fixed number of
imputations to impute the missing data values. Each imputation consists of a filled-in phase and an imputation phase. In the

filled-in phase, the missing data values are filled-in by using a sequence of regression analyses for the p, continuous

variables. These filled-in data are then used as the initial data for the imputation phase in which the missing data values are
imputed by using a sequence of regression analyses for the p, continuous variables. These imputed data are then used as the

initial data for the next iteration of the imputation phase and a fixed number of iterations are executed for each imputation.

The filled-in stage fits the following p, regression models sequentially to the data, namely

X = ﬂm +€
X, = :Boz + ﬂ21X1 +€,
X3 = ,Bos + ﬂ31X1 + ﬂszxz +€;

Xo, = Bop, T BoaXi B oXo tooet By aXp 1 18y
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where the elements of B=[,801 Bz ~-ﬂpc’pc_l] denote unknown regression weights and e, e,,...,e_ are p,error

Pc
variables. The first model is fitted to the complete data for X, . The corresponding estimates are then used to simulate new

parameter values from the posterior distributions of the parameters which in turn is used to fill-in the missing data values

for x, . The second model is then fitted to the complete data for x, and the filled-in data for X, . The final model is fitted to
the complete data for X, and the filled-in data for x,, x,, ..., X, ;. The filled-in data for x;, X,, ..., X, are used for the
first iteration of the imputation phase. The simulation of the new parameter values from the posterior distributions of the

parameters and the imputation of the missing data values for each of the p, regression models use the same steps as outlined
next for each iteration of the imputation stage.

For each iteration of the imputation stage, the following regression models are fitted sequentially either to the filled-in data
or the imputed data, namely

Xj = Lo+ PXo+4 BiaXig+ PiaXpg + o+ By X, +E

where j =1,2,..., p,, the elements of PB; :[,HO B ...ﬁj_lﬁm...ﬁpc] denote p, unknown regression weights, and e,

denotes an error variable with variance O'J-Z . The estimated covariance matrix of the estimator B ; of B; may be expressed

as
o2V —az(X’ X )’l
iV T c(j)” te())

where Xc(j) denotes rows 1,2,..., j—1, J,..., p. of the filled-in or imputed data. New values for the parameters are then

c

simulated from their posterior distributions as
n .
B,=B; +o;V,z
~2
2 _ O (nj B pC)
tj c
where th denotes the upper triangular matrix in the Cholesky decomposition of Vj = Vr:thj , zdenotes a p, x1 standard

normal vector, and ¢ is a Chi-square variable with n;, — p, degrees of freedom. The missing data values are then imputed
as

'
Xeijm = Bjtxci(j) + 05

where X denotes row i of X and z is a standard

cijm

normal variable.

denotes a missing data value in row i and column j of X_, Xeici) (i)

Average moment matrices

Suppose that X;;, X,;,..., X are m imputed data sets for the incomplete data matrix, X, of the of p, ordinal variables

and U,;,U,,...,U

corresponding mixed correlation matrices and the estimated asymptotic covariance matrices of the mixed correlations,
respectively. Then, the average mixes correlation matrix is

mi

X Xoyeees Xp. and the p. continuous variables X, X,, ..., Xo, and that R;,R,,...,R denote the

m m
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_ 1
R= - Z R,
and the average estimated asymptotic covariance matrix is
U=

Chung and Cai (2019) point out that U only captures uncertainty based on complete data. As a result, its inverse cannot be
used as a weight matrix for the robust DWLS, WLS, and ULS methods for structural equational modeling. A corrected weight
matrix is obtained by correcting for the between-imputation variation in the estimated mixed correlations and is obtained as
the inverse of

X- D+%§:(ﬁ -T)(r, —F)'}

where r denotes the p X (p — 1) /2 vector consisting of the nondiagonal and nonduplicated elements of the p X p symmetric
matrix R. R and Y can be used to fit structural equation models to the average mixed correlation matrix with the robust

DWLS, WLS, and ULS methods. The corrected robust DWLS and ULS Chi-square test statistic proposed by Chung and Cai
(2019) is given by
Ty = (N—=1)(r—p(8))'V(r—p(8))

where

V=""1-TAAA) AT

where A denotes the Jacobian matrix of p(0) with respect to the unknown parameters, 0, of the structural equation model

evaluated at @ =0. The small sample adjusted T, test statistic (Yuan and Bentler 1997) is given by

TB
Te=——
1+nT, /(n-1)

1.4 Measurement model for visual and verbal ability

The data are the simulated scores of 1250 girls on six psychological tests (visual perception, cubes, lozenges, paragraph
completion, sentence completion, and word meaning). The corresponding data file is GIRLS.LSF, and the first few
observations are shown in the image below.
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[1GIRLS.Isf = B
visperc cubes lozenges paragraf sentenc wordmean
1 -0.71 -1.96 -6.87  -999999.00 -0.24 7.60 10N
2 -6.42 -8.64 -4.37 059 153 963 |
3 B.79 -2.15 10.21 229 281 8.92
4 9.72 -2.38 14.83 0.48 417 6.80
5 -999999.00 0.65 -8.02  -999999.00 -7.51 -1261
6 Syl -999999.00 -2.18 0.48 670 -999999.00
7 -999999.00 7.80 -999999.00 -999999.00 -1.22 5.38
B -899959.00 -2.14 5.24 -1.01 272 373
9 260 572 -0.64 -0.04 -1.32 -899999.00
10 0.73 -7.94 -6.89  -999999.00  -999999.00 -27.54
11 -3.66 -4.20 351 6.26 925 12.35
12 -6.26 0.88 -14.83 4386 0.88 12.27
13 GEee] -999999.00 -8.80  -999999.00  -999999.00 -1.79
14 8.77 -3.62 -999999.00 -3.47 -0.57 -899999.00
15 -2.61 -6.94 1.41 -0.65 -581 -899999.00

Note that the data values of -999999.00 are missing data values. If a different global missing data value code is used, it
should be assigned using the Define Variables dialog box.

The theoretical model is a measurement model that specifies that the six psychological tests are indicators of visual ability
and verbal ability of Junior High students. A path diagram for this model is depicted in the image below.

—=| Visperc

—={ cubes

—={lozenges

—=Iparagraf

—=| sentenc

—=wordmean

The SIMPLIS syntax file to fit the theoretical model to the average sample covariance matrix of 30 MCMC imputations is
shown in the image below.
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GIRLS4A.SPL

BN

Raw Data from File GIRLS.LSF

Latent Variables

VisualBAbility VerbalRbility

Relationships

visperc cubes lozenges = VisualBAbility
paragraf sentenc wordmean = VerbalRbility

Path Diagram
End of Problem

LISREL Output: SC ME=ML MI2S5 NM=30 IX=103829 IM=MC

e Line 1 specifies the data file.
e Lines 2 and 3 specify the labels for the two latent variables.

o Lines 4 to 6 specify the measurement model for the six psychological tests.
e Line 7 requests that the results in the output file should be given in terms of the LISREL model for the measurement
model (LISREL Output). It also requests that the completely standardized solution should be written to the output
file (SC), and robust maximum likelihood estimation (ME = ML). The MI2S option invokes the two-stage multiple
imputation SEM method to fit the model to the average sample covariance matrix of the NM = 30 MCMC imputations

(IM = MC) based on an initial random seed of IX = 103829.
e Line 8 requests a path diagram of the model.
e Line 9 indicates that no more SIMPLIS commands are to be processed.

When the SPL file above is opened in LISREL and the Run LISREL icon is clicked, the following path diagram is obtained.

21 ooy vispere \

10.30-= cubes

5.
18.82-m] lozenges/

3.05-mparagraf 3,51

erbalAD

¢ coel sentenc /G-85

14.g4-m=lWOrdmean

Chi-Souare=11.66, df=8 P-value=0.16697, RVSEA=0.019

ility

The corresponding output file, GIRLS4A.OUT, is opened in a separate window. The Chi-square test statistic values listed in

this file are shown in the image below.
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[ GIRLs4A.0UT =R =<
Goodness-of-Fit Statistics ~
Degrees of Freedom for (Cl)-(C3), (C5) 38
Maximum Likelihood Ratio Chi-Square (Cl) 11.804 (P = 0.16019)
Browne's (1984) ADF Chi-Square (C2 NT) 11.666 (P 0.16673)
Browne's (1984) ADF Chi-Square (C2 NNT) 12.005 (P 0.15098)
Satorra-Bentler (1988) Scaled Chi—EQUare (C3) 11.661 (P = 0.16697)
Satorra-Bentler (1988) Adjusted Chi-Square (C4) 11.490 (P = 0.16815)
Degrees of Freedom for C4 7.882
Chi-Square Scaled and Shifted (C5) 11.634 (P = 0.16828)
P-Value of Cl1 under Non-Normality = 0.1e77 v
< >

These Chi-square test statistic values indicate that the theoretical measurement model for numerical and verbal ability is
supported by the data.

1.5 Two-wave model for political efficacy and political responsiveness

This example is based on panel data of the six political efficacy measurements described in Aish and Joreskog (1990)
observed in two different calendar years. The data file, PANELUSA.LSF, consists of 933 cases obtained in a USA sample.
The first few observations of this data file are shown below.

[] panelusa.LSF E@

NOSAY1 VOTING1 | COMPLEX1| NOCARE1 TOUCH1 INTERES1 NOSAY2 VOTING2
2.00 2.00 1.00 1.00 1.00 1.00] -999989.00 2.00| 2
2.00 3.00 3.00 3.00 2.00 3.00 200 3.00
3.00 2.00 2.00 3.00 3.00 3.00 3.00 2.00
2.00 200 1.00 1.00 2.00 1.00 2.00 2.00
3.00 200 2.00 3.00 3.00 3.00 3.00 2.00
2.00 200 2.00 2.00 1.00 2.00 3.00 2.00
3.00 1.00 2.00 2.00 2.00 2.00 2.00 2.00
2.00 1.00 2.00 2.00 1.00 1.00 3.00 3.00
3.00 3.00 2.00 2.00 3.00 3.00 3.00 3.00
2.00 200 3.00 1.00 1.00 1.00 2.00 2.00
3.00 200 1.00 1.00 2.00 2.00 3.00 2.00
1.00 1.00 1.00 1.00 1.00 1.00 3.00 3.00
2.00 200 2.00 1.00 2.00 2.00 1.00 1.00
3.00 3.00 2.00 3.00 2.00 2.00 3.00 2.00
3.00 3.00 3.00 3.00 3.00 3.00 2.00 3.00
3.00 3.00 2.00 2.00 3.00 2.00 2.00 2.00
3.00 3.00 4.00 2.00 1.00 1.00 2.00 2.00
4.00 200 3.00 400 -999999.00 -999999.00 3.00 200 +

i

1
2
3
4
5
6
7
8
9

The data values of -999999.00 are missing data values. If a different global missing data value code is used, it should be
assigned using the Define Variables dialog box.

The data are the responses to the following statements:

People like me have no say in what the government does (NOSAY)
Voting is the only way that people like me can have any say about how the government runs things (VOTING)
Sometimes politics and government seem so complicated that a person like me cannot really understand what is
going on (COMPLEX)
I do not think that public officials care much about what people like me think (NOCARE)
Generally speaking, those we elect to Parliament lose touch with the people pretty quickly (TOUCH)
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e Parties are only interested in people’s votes but not in their opinions (INTEREST)
The ordered categories are:
1: agree strongly
2: agree
3: disagree

4: disagree strongly

The theoretical model is a two-wave model for political efficacy and political responsiveness. A path diagram of the
theoretical model is shown in the image below.

—= NOSAY1 NOSAY2 |ws—

—=COMPLEX1 Efficacl @ COMPLEX2 [«a—
NOCARE2 |<a—

—={ NOCARE1
—= TOUCH1 TOUCH2 |~=—
—= INTERES1 INTERES2 fwa—

The SIMPLIS syntax file to fit the model reflected in the path diagram above to the average polychoric correlation matrix
of 10 FCS imputations is depicted in the image below. The two-stage multiple imputation SEM syntax is reflected on the
LISREL Output command as MI2S which requests the method, NM = 10 which requests 10 FCS imputations (IM = FC), and
IX = 18957 which requests a starting random seed of 18957.

N
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PANELUSA4A.SPL

N

Latent Variables

Raw Data from File panelusa.lsf

Efficacl Responsl Efficac2 Respons?2

Relationships

NOSAY1 COMPLEX1 NOCARELl = Efficacl
NOCARE1 TOUCHI INTERES1 = Responsl
NOSAYZ COMPLEX2 NOCAREZ = Efficac2
NOCAREZ2 TOUCH2 INTERES2 = Respons2

Let the errors of NOSAYl and NOSAY2 correlate

Let the errors of TOUCHL and TOUCH2 correlate
Efficac2 = Efficacl

Respons2 = Responsl

Path Diagram
End of Problem

Let the errors of COMPLEX1 and COMPLEXZ2 correlate
Let the errors of NOCAREl and NOCAREZ correlate

Let the errors of INTERES1 and INTERESZ correlate

Let the errors of Efficac2 and Respons2 correlate
LISREL Output: SC MI2ZS ME=WLS IX=18957 NM=10 IM=FC

Line 1 specifies the raw data file.
Lines 2 and 3 specify labels for the latent variables of the model.

Lines 4 to 16 specify the two-wave model for political efficacy and political responsiveness.

Line 17 requests that the results in the output file should be given in terms of the LISREL model for the structural
equation model (LISREL Output). It also requests that the completely standardized solution should be written to the

output file (SC) and weighted least squares estimation (ME = WLS).
Line 18 requests a path diagram of the model.
Line 19 indicates that no more SIMPLIS commands are to be processed.

NOSAY2

|0 .

0.42-= NOSAY1 \

0.76 0.73

0.72-|COMPLEX1 |<a—0.53 @ 0.62\0A49—> COMPLEX2 |~a-0.
0.57 0.43

0.29-== NOCARE1 > NOCARE2 |<a-0.
0.31 0.53

o /

0.80 0.79

0.37-={ TOUCH1 / TOUCH2 |=e-0.
0.89 0.90

0.21-s=| INTERES1 INTERES2|~a0.

Chi-Square=22.57, df=24, Pvalue=054538, RMSEA-0.000

24

38

19

When the SPL file above is opened in LISREL and the Run LISREL icon is clicked, the following path diagram is opened.
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The corresponding output file, PANELUSA4A.OUT, is opened in a separate window. A small portion of this file is shown
in the following image.

[ PANELUSA4A.OUT =
Goodness—-of-Fit Statistics ~
Degrees of Freedom for C(1l),C(6) 24
Weighted Least Squares Chi-Square (C1) 22.568 (P = 0.54538)
Yuan-Bentler (1997) Chi-Square for Cl (C&) 22.035 (P = 0.57718)
Estimated Non-centrality Parameter (NCP) 0.0
90 Percent Confidence Interval for NCP (0.0 ; 13.0674)

Minimum Fit Function Value 0
Population Discrepancy Function Value (FO) 0.
90 Percent Confldence Interval for FO (0.0 ; 0.0147)
Root Mean Square Error of Approximation (RMSEA) 0.0

90 Percent Confidence Interval for RMSEA (
P-Value for Test of Close Fit (RMSEA < 0.05) 1

; 0.0247)

These goodness-of-fit statistic values indicate that the theoretical two-wave model for political efficacy and political
responsiveness is supported by the data.

2. Standard error and confidence interval estimates

2.1 Standard error estimates for standardized solutions
The LISREL model for observed and latent variables

The LISREL model (Jéreskog 1973, 1977) for population covariance matrices may be expressed as

y=Amn+e
X=AE+0
n=Bn+I¢+{

where y and X denote p, and p, indicators of them, endogenous latent variables, m, and them, exogenous latent
variables, &, respectively, Ay and A, are p,xm, and p, xm, matrices of factor loadings, respectively, € and o denote
p, and p, measurement errors, respectively, B and I' are m xm, and m, xm, matrices of regression weights,

respectively, and the elements of { denote m, error variables.

The tx1 vector, z, consisting of all the variables of the LISREL model follows as
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S m ogw 3B X <<

4
The model for the relationships between all the variables of the LISREL model may then be expressed as
z=B,z+z,
where
00 A 0 Ipy 0 0
00 0 A, O I, 0
OO0 B I 0 0 Imq
B=loo o o 0 0 o0
00 0 o o o0 o
00 0 0o o o0 o0
00 0 0o o o0 o0
where | denotes the nxn identity matrix and
0
0
0
Z,=| 8
€
)
g
The covariance matrix, ®,, of z_follows as
000 0 O 0 O
000 0 O 0 O
000 0 O 0 O
® =000 o 0 0 0
0000 © O, 0
0000 ©, 6O, 0
000 0 O 0O v




where @, ©_, O,, and ¥ denote the covariance matrices of &, €, 9, and {, respectively and @ ; = @', denotes the

covariance matrix between ¢ and & . The txt covariance matrix of z, Y,, may then be expressed as
—1 _1 ,
Yt:(lt—Bt) D, (It—Bt) = A DA

where A, =(I,—B,)". The (p+m)x(p+m) covariance matrix, Y, of the p= p, + P, observed variables and

m=m, +m, latent variables, follows as

r=[1,,, 0](1,-B) @ (L -B)"[1,, 0] =A®A

where A denotes the ( p+ m)xt matrix consisting of the first p+m rows of A, . In terms of the parameter matrices of
the LISREL model, we obtain that

vy yn

Xy Xn

ny n

M MMM
M MMM

gy

where

-1 ’ -1 * '
szAy((I—B) r'or(i-B) +\1')Ay+@)5

! 14 =Y 14
z, =X, =A0I"'(I-B)" A, +0,
X =A DA +0,
-1 ’ -1’ * '
2W=((I—B) ror(I-B)Y +¥ )Ay
! -1 !
z, =X =(I-B) T®A,
_ -1 ’ -1 *
x,=I-B)'TOr'(I-B) ™" +¥
_ ’ =1 A
X, =0r'(I-B) YA
X, =X, =®A,
X, =X.=0r'(I-B)"

én

X..=®

= 4

where

¥ =(I-B)'YI-B)™"
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Completely standardized solution

Suppose now that Bt and (i)t denote the unstandardized estimators of B, and ®, , respectively. The reproduced covariance
matrix of the observed and latent variables may then be expressed as

{=Ad A’
The completely standardized covariance matrix of the observed and latent variables follows as
N2 & A my-1U2
Y =D "A®AD;
-1/2

b
observed and latent variables on the diagonal.

where D."*denotes a (p+m)x( p+m) diagonal matrix with the reciprocals of the estimated standard deviations of the

The relationships between the unstandardized and the completely standardized estimators are given by

oobD' 0 0 0 0 (00D, 0O 0O 0O
00 0 D' 0o 0 0| [00 0 D, 0 0 O
0o o o D! Dol |00 0 O D D O
Bi=<loo o 0 o o0 0Bloo o 0o 0o 0 0
00 0 O O 0 O [00 O 0O 0 0 O
00 0 O O 0 O [00 O 0O 0 0 O
000 0 0 00 (00O 0 0 0 O
and
000 0 0 0 O 000 0 0 0 ©
000 0 0 0 © 000 0 0 0 O
000 0 0 0 O 000 0 0 0 O
d=/0 00D 0 0 O0|p[000D 0 0 0
000 0O D' 0 0 000 0O D' 0 0
000 0O 0 D 0 000 0O 0 D 0
o000 0 0 D' (000 0 0 0 D}

where f)y, f)x, If),7 , and If)é denote diagonal matrices with the estimated standard deviations of the elements of y, X,

,and & on the diagonal, respectively.

Suppose that the vector @ consists of the g unknown elements of B and ®. Let 0 denotes the unstandardized estimator
of @ as such that asymptotically
0~ N(0,H(0))

By using the Delta method (Bishop, Fienberg, and Holland 1988), the asymptotic distribution of the completely standardized
estimator, @, of © follows as
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6~ N(67,AH(0)A)

*

where A :5—9, and the elements of " are the unknown elements of B” and @ . Typical elements of B” and @ are
given by
:B: = Uizl/zu}jlzﬁij
and
¢J _ Ur—rl/z US—S1/2 ¢|j
respectively where r and S are defined as

i ifi< j ifj<
.l i | | p+mands: _ J Ifj p+m
i—p-m ifi>p+m j—p-m ifj>p+m

respectively. Suppose that the sets I;and I, are sets containing the row and column positions of the unknown elements

of B and ®, respectively, i.e.
lg ={(i.j): 8, €0} and 1, ={(i, j): 4, <0}

respectively. The partial derivatives of the diagonal elements of Y with respect to the elements of B and @ may then be
expressed as

e

so. [240, i (KI)ely
0 if(k)el,

and

Sv, J2(1+68,) A if (K 1)el,
5by 0 it (k,1)el,

respectively where o,, denotes the Kronecker delta, i.e.

1 ifk=I
5k|: .
0 ifk=l
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Typical elements of A may be expressed as

By o
—L if(i,j)ely and (k1) el
o, T(hi)els and (kl)el,
oB.
Pi it (i j)el, and (k1)<
A _ 5¢kl
[ ]ij,kl_ 5¢_’f
—L if (i,j)el, and (k,I)e
5ﬂk|
5y oo
—L if (i,j)el, and (k1) el
55, T(d)elo and (kl)el,
where
gﬂ* ﬂ, U U—l/ZU;l/Zﬂij_/ll | —3/2 1/2ﬂIJ +U_1/2 ::_]/22: ij
ﬂkl ﬂkl
0, o _
5_1_[ﬂjkﬁ'j| ||1/2 '1/2 ﬂ'lk |IU||3/2 1/2}(14-5“) ﬂ”
b
S6
¢ _ |:21kU|I “—3/2 _l/2+ﬂ D U—1/ZU_3/2:|¢ilj
§ﬂk|
% O,
ﬁ=—[i,kl,,u,,_3/2 _l/2+/1 A v ‘3’2](1+5kl) ¢+ U—l/ZUﬂl/z o
OB 54,

The standard error estimates of the completely standardized estimators of the elements of @ are obtained as the positive
square roots of the diagonal elements of the estimated asymptotic covariance matrix of 0" which is given by

H'(6)=A(6,6)H(6)A(6",6)

These standard error estimates are numerically equivalent to those obtained by transforming correlation structures to
covariance structures and fitting the transformed covariance structures correctly to the sample correlation matrices by using
the theory and methods for covariance structures proposed by Shapiro and Browne (1990) which are implemented in Steiger
(1995) and Browne and Mels (1996). Whenever a LISREL model without parameter equality constraints is fitted to a sample
correlation matrix, the standard error estimates of the completely standardized solution are the correct standard error
estimates which addresses the issue of incorrect standard error estimates for correlation matrices pointed out by Cudeck
(1989).

Standardized solution

Let Iét and (i)t denote the unstandardized estimators of B, and ®,, respectively and let B: and ﬁ): denote the
corresponding standardized estimators. The relationships between the unstandardized and the standardized estimators of B,

and @, are given by
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cotr, 0 0 0 0 (00D 0 0 0O
0o o0 I, 0 0 O o0 0D, 0 0 O
~|oo 0o o D' D'o| |00 O 0O D DO
B.=loo o0 o 0o o 0oBjoo o 0o 0 o0 O
000 O O 0 O |00 O0 0 0 00
000 O O 0 O |00 O0 0O 0 00
000 0 0 00 (000 0 0 00
and
000 0 0 0 0 000 0 0O 0 0
000 0 0 0 0 000 0 0 0 0
000 0 0 0 0 000 0 0O 0 0
é=[0 00D 0 0 0|p|000D 0 0 0
000 0 I, 0 0 000 0 I, 0 0
000 0 0 I, 0 000 0 0 I, 0
000 0 0 0D (000 0 0 0 D

respectively where If),7 and D ¢ denote diagonal matrices with the estimated standard deviations of the elements of n and

€ on the diagonal, respectively.

Suppose that the vector @ consists of the g unknown elements of B and ®. Let 0 denotes the unstandardized estimator
of 0 as such that asymptotically

0~ N(0,H(0))

By using the Delta method (Bishop, Fienberg, and Holland 1988), the asymptotic distribution of the standardized estimator,
0", of O follows as

6~ N(67,AH(0)A)

*

where A :5—0, and the elements of @ are the unknown elements of B™ and @ . Typical elements of B” and ® are
given by

1/2 e
5 - v By ifi<p

i -1/2, .1/2 Y 4
v vy By ifi>p

and

) {u;:’zu;’zﬂj if (i,j)el,

respectively where r and S are defined as
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i ifi< i ifj<
r:{ i ifi p+mands:{_ j Ifj p+m
j—p-m ifj>p+m

i—p-m ifi>p+m

respectively and where the sets |, and I, are defined as

L ={G,j):i,j<p+mori, j>2p+m} and 1, ={(i, j): p+m<i, j<2p+m}

respectively.

Suppose that the sets 15 and 1, are sets containing the row and column positions of the unknown elements of B and @,

respectively, i.e.

lg ={(i.j): 8, €0} and 1, ={(i, j): 4, <0}

respectively. The partial derivatives of the diagonal elements of Y with respect to the elements of B and @® may then be

expressed as

Sv. {UWH if (k,1)el,
P

0 if (k,l)§zlB
and

su, |2(1+8,) A i (k1)el,
0 if (k,1)el,

5y
respectively where o,, denotes the Kronecker delta, i.e.
1 ifk=I
Oy = .
0 ifk=l

Typical elements of A may be expressed as

B ...
s ietsand (k<
Py if (i,j)elgand (k,1)el,
5¢k|

[A]ij,kI: 5¢*
i (1) <o and (k1)<
L/
% if (i, j)el, and (k,1)el,
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where

o)
. vu0; By +U — il ifi<p
By _ B
o) op.
,Bm ﬁ’jkujIUii_lIZUillzﬂij _l. U -3/2 uzﬂ” i—1/2 2 ﬁ ifi> P
kl
5B, (1+64) A 05 B, ifi<p
5% [ﬂ ﬁ U-1/2 —1/2 |k/11l —3/2 1/2:|(1+5kl )_1ﬂu ifi> P
Sy | Aoy 20070, g, if (i,j)el,
P 0 if (i, j) €
X —[ﬁ«,k/l,,l),:glz 12 +/1 2, 071/2 73/2](1_'_5“) ¢u U—lIZULlIZ % if (i, J) c |1
% _ 54,
O op.
g il if (i, ) el,
O

The standard error estimates of the completely standardized estimators of the elements of @ are obtained as the positive
square roots of the diagonal elements of the estimated asymptotic covariance matrix of 0" which is given by

!

H(67) = A (6",6)(6)a(67,0)

2.2 Confidence interval estimates
The extended LISREL model

In the extended LISREL model (Jéreskog and Sérbom 1999), the three sets of relationships between the observed and latent
variables are given by

y=1,+An+e
X=1,+AE+0
n=o+Bn+T&+{
where the elements of y denote p, observed indicators of the m, endogenous latent variables n, the elements of X denote
p, observed indicators of the m,. exogenous latent variables &, the elements of & denote p, measurement errors, the
elements of 6 denote p, measurement errors, the elements of { denote m, error variables, the elements of T, are p,
intercepts, the elements of T, are p, intercepts, the elements of a are m, intercepts, the elements of A are p, xm,

measurement weights, the elements of A, are p,xm. measurement weights, the elements of B are m, xm, regression

weights, and the elements of I' are m, xm, regression weights. We assume that € is uncorrelated with &, € is

37



uncorrelated with n, and that & is uncorrelated with &. We also assume that the means of €, and o, and { are zero, but
it is not assumed that the means of & and m are zero. If the mean of £ is denoted by k , the mean of n follows as

n, =(I-B)™*(a+TIx)
The mean vectors of the observed indicators are given by

§- {uy} _ [‘ry +Ay(1—B)-1(u+rK)}

ny T, +AK

The covariance matrix of the observed indicators follows as

-1 ' =1 * ' -1 '
. Ay((I—B) ror'(i-B) +‘I’)Ay+®g A,(I-B)'T®A’ +0,,
A®T'(I-B) AL +0, A ®A +O,

where
¥ =(I-B)'YI-B)™"

and @ denotes the covariance matrix of &, ®, denotes the covariance matrix of €, @, denotes the covariance matrix of

0, O, =0, denotes the covariance matrix between 8 and € , and ¥ denotes the covariance matrix of .

The g unknown parameters © of the extended LISREL model consist of the unknown elements of A, A,, B, I', ®@,
¥, 0,60, 0,=0, T, T,, 0,and K.

Unstandardized solution

Suppose that 0 denote the unstandardized estimators of the parameters 0 of the extended LISREL model as such that
asymptotically

0~ N(0,H(0))

The elements of 0 consists of intercepts, measurement weights, regression weights, variances, and covariances. The
intercepts, measurement weights, regression weights, and covariances are unbounded parameters. As a result, the
100(1- )% approximate confidence interval estimates of these parameters (Browne 1982) are given by

(4-2,05(8):0+2,05(4))

where 67, denotes the estimate of &,, z,,, denotes the 100(1—« /2)% critical value of the standard normal distribution

and s(é, ) = [H (6)} denotes the estimate of the standard error of the estimator of &, . If 6, denotes a variance, then &,

is a bounded parameter as such that 0 <6 <oo. In this case, a logarithmic transformation is used as such that the

100(1—- )% approximate confidence interval estimate of 8, (Browne 1982) follows as
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(Gexp(~2.,5(8)/4): 0 xp 2.,5(6) /4
Standardized solution

Let §° denote the standardized estimators of the parameters @ of the extended LISREL model. By using the Delta method
(Bishop, Feinberg, and Holland 1988), it follows that asymptotically

0"~ N(07,AH(0)A")

where A denotes is Jacobian matrix of @ with respect to 0. The elements of " consists of intercepts of the observed
indicators, measurement weights, standardized regression weights, variances, standardized variances, covariances, and
correlations. The intercepts of the observed variables, measurement weights, and covariances are unbounded parameters.
As a result, the 100(1— )% approximate confidence interval estimates of these parameters (Browne 1982) are given by

(éi* - Za/ZS(éi*) ) éi* T 24128 (é*))

where éi* denotes the estimate of &/, z,, denotes the 100(1—« / 2)% critical value of the standard normal distribution

and S(éi*) = \/{A(é*,ﬁ)H(ﬁ)A(é*,ﬁ) } denotes the estimate of the standard error of the estimator of Hi*. If Hi* denotes

a variance, then & is a bounded parameter as such that 0 < @ <oo. In this case, a logarithmic transformation is used as

such that the 100(1— «)% approximate confidence interval estimate of Hi* (Browne 1982) follows as

(Gexp(-2.05(6,)/6):0,ex0(2,05(6.) /6
If & denotes a standardized variance, then & is a bounded parameter as such that 0< @ <1. The 100(1—a)%

approximate confidence interval estimate of Gi* (Browne 1982) may be expressed as

za,zs(éi*) _ 1 _Zalzs(éi*)
@)™\ ) o™ a e

When @ is a standardized regression weight or a correlation, & is bounded as such that —1< & <1. In this case, the

1+

Fisher z-transformation is used as such that the 100(1— )% approximate confidence interval estimate of ¢9i* (Browne
1982) is given by

e \0) .* +1 (1+6}*Jexp ZZa,Zs(éﬂ*) +1
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Completely standardized solution

If @ denote the completely standardized estimators of the parameters 0 of the extended LISREL model, the asymptotic
distribution of @ is obtained by means of the Delta method (Bishop, Feinberg, and Holland 1988) as

0"~ N(0",AH(0)A")
where A denotes is Jacobian matrix of @ with respect to 0. The elements of 0" consists of standardized measurement
weights, standardized regression weights, standardized variances, and correlations.

If @ denotes a standardized variance, then @ is a bounded parameter as such that 0< @ <1. The 100(1- )%
approximate confidence interval estimate of ¢9i* (Browne 1982) may be expressed as
ZaIZS(ei*) 1 _ZQIZS(Qi*)

1+ (49. —1) exp 6?, (1—6?,)

where éi* denotes the estimate of &/, z_,, denotes the 100(1—« / 2)% critical value of the standard normal distribution

and S(éi*) = \/{A(é*,ﬁ)H(ﬁ)A(ﬁ*, 6)’} denotes the estimate of the standard error of the estimator of & .

When Hi* is a standardized measurement weight, a standardized regression weight, or a correlation, Hi* is bounded as such
that —1< @ <1. In this case, the Fisher z-transformation is used a such that the 100(1— )% approximate confidence

interval estimate of ¢9i* (Browne 1982) is given by
s -27_,,S 0, 22,8 6?,
(1+49i] /2 ( ) 1 [1+6?I JEXp /2 ( ) 1

)

[1+0:i*]exp _Zza/zf(éi*) 1 (1+6}*Jexp ZZQ/ZS(é’i*) 1
(1-67) 4

2.3 Structural equation model for work ethic

The data are the scores of 194 first-year students at a high school in Bainbridge, Georgia on ten observed scores (average
socio-economic index, average age of parents, grade point average, self-esteem at school, self-esteem at home, self-esteem
around peers, attitude towards father, attitude towards mother, work ethic, and average education level of parents). The first
couple of observations of the corresponding data file, STUDENTS.LSF, are shown below.
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[.JSTUDENTSIsf e .
AVG SES | AVGP_AGE GPA SSES | SSEH | s SEP CAF CAM__ [TOTAL_OW| AVGP_EDU

1 3555 4050 85.00 20.00 2500 22.00 1533 14.00 1269 3.00 4
2 3462 4150 75.00 26.00 21.00 29.00 12.00 2,00 1293 200
3 30.13 50.50 85.00 24.00 25.00 23.00 19.33 2133 1243 150
4 35.37 37.00 95.00 23.00 26.00 26.00 533 0.00 19.82 7.50
5 2240 4350 75.00 20.00 24.00 23.00 24.67 34.00 1463 1.50
6 15.96 2050 85.00 24.00 26.00 25.00 733 0.00 12.89 150
7 2275 49.00 95.00 24.00 25.00 31.00 56.67 4.00 1829 3.00
8 3731 47.00 75.00 24.00 2450 17.00 733 50.00 1056 200
9 2270 37.00 85.00 27.00 30.00 24.00 50.00 34.00 11.13 200
10 2254 4250 85.00 26.00 27.00 27.00 667 467 13.02 2.00
11 2350 3050 75.00 24.00 29.00 26.00 50.00 50.00 1174 1.00
12 23.98 29.00 85.00 27.00 2750 2200 0.00 217 16.82 3.00
13 23.43 3550 85.00 25.00 21.00 26.00 6.00 6.67 1355 200
14 3091 3250 85.00 25.00 25.00 24.00 3667 42.00 1199 4.00

15 49.20 45.00 85.00 34.00 25.00 32.00 14.67 733 1495 200 v

] ] v

The theoretical model is a structural equation model that suggests that socio-economic status, home environment, grade
point average, and self-esteem at school are antecedents of self-esteem around peers and work ethic. A path diagram for this
model is depicted in the image below.

AVG_SES

AVGP_AGE

@

—] GPA

—={ S SE 3

S_SE H

\ X
\\

CAF

CAM

AVGP_EDU

SEPEERS J——m—

S_SE P

[——

\ WETHIC J—m—m—mm

TOTAL_OW

|—

The SIMPLIS syntax file for the theoretical model above is shown in the image below.
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STUDENTS.SPL =B

Raw Data From File STUDENTS.LSF ~
Latent Variables

SES HOME ATT APTITUDE SCHOOLATT SEPEERS WETHIC
Relationships

RVG_SES AVGP AGE AVGP_EDU = SES

5 SE_H CAF CAM = HOME_ATT

GPR = 1*RPTITUDE

5 SE_S = 1*SCHOOLATT

5 SE_P = 1*SEPEERS

TOTAL OW = 1*WETHIC

Set the Error Variance of GPA to 0.0

Set the Error Variance of S_SE_S to 0.0

set the Error Variance of S_SE P to 0.0

Set the Error Variance of TOTAL OW to 0.0

SEPEERS = HOME_ATT SCHOOLATT APTITUDE SES

WETHIC = SEPEERS HOME_ ATT SCHOOLATT APTITUDE SES
Options: 58 sC

Path Diagram

End of Problem V]

e Line 1 specifies data file to be used.

e Lines 2 to 3 specify the labels for the latent variables of the model.

e Lines 4 to 16 specify the model to be fitted to the data.

e Line 17 requests the standardized and completely standardized solutions.
e Line 18 requests a path diagram of the model.

e Line 19 indicates that no more SIMPLIS commands are to be processed.

14.16 AVG_SES

10.88
22.94 |AVGP_AGE 2.44 .
0.47
0.00—= GPA SEPEERS 1.00——= S_SE P |<0.00
~0.26
. 0.12
0.00-== S SE S 1.00 0.08 0.18
- = \
0.5T% -0.69
N\
\9.62 0.39
4.80 S _SE_H 1\A60 0.06 \ WETHIC 1.00————»=TOTAL OW|~=0.00
13.77

0.13
304.61 CAF

87.24 CAM

1.68 |AVGP_EDU

Chi-Suare=28.71, dfi=24, Pvalue=0.23138, RMSEA-0.032

If the SPL file is opened in LISREL and the Run LISREL icon is clicked, the path diagram shown above is obtained.



The corresponding output file, STUDENTS.OUT, is opened in a separate window. The confidence interval estimates of the
structural equation model parameters for the unstandardized solution, the standardized solution, and the completely
standardized solution, which are listed in this file, are shown in the images below.

[ sTubEnTS.0UT == R

Structural Equations -

SEPEER5=0.475*5E5 - 0.257*HOME ATT + 0.0801*APTITUDE + 0.391*SCHOOLATT, Errorvar.= 7.557 , R*=0.214

90% CILL(0.106; (-0.668; (0.0272; (0.255; (6.385;
90% CIUL 0.544) 0.154) 0.133) 0.527) 5.945)
Standerr (0.224) (0.250) (0.0322) (0.0827) (0.774)
Z-value 2.116 -1.030 2.488 4.728 §.758
P-value 0.034 0.303 0.013 0.000 0.000

WETHIC=0.177*SEPEERS + 0.120*SES - 0.692*HOME ATT + 0.0610*APTITUDE + 0.125*%SCHOOLATT, Errorvar.= 3.240 , R*=0.355

90% CILL(0.0970; (-0.130; (-0.997; (0.0240; (0.0289; (2.698;
90% CIUL 0.258) 0.371) -0.387) 0.0980) 0.222) 3.892)
Standerr (0.0489) (0.152) (0.185) (0.0225) (0.0587) (0.361)
Z-value 3.631 0.752 -3.734 2.709 2.138 5.980
P-valus 0.000 0.428 0.000 0.007 0.033 0.000 v

[ STUDENTS.OUT =R <"

Structural Equations A

SEPEERS=0.153*3ES - 0.0830*HOME_ATT + 0.180*RPTITUDE + 0.307*SCHOOLATT, Errorvar.= 0.786

90% CILL(0.0341; (-0.215; (0.0603; (0.202; (0.68¢6;
90% CIUL 0.26&8) 0.04595) 0.295) 0.408) 0.661)
Standerr(0.0714) (0.0804) (0.0717) (0.0623) (0.0532)
Z-value 2.145 -1.033 2.514 4.932 14.785%
P-value 0.032 0.302 0.012 0.000 0.000

WETHIC=0.245*%SEPEERS + 0.0537*5ES - 0.308*HOME ATT + 0.190*APTITUDE + 0.136*SCHOOLATT, Errorvar.= 0.645

90% CILL(0.133; (-0.058; (-0.440; (0.0734; (0.0308; (0.537;

90% CIUL 0.351) 0.164) -0.178) 0.301) 0.239) 0.740)

Standerr (0.0665) (0.0677) (0.0797) (0.0695) (0.0635) (0.0625)

Z-value 3.689 0.753 -3.871 2.731 2.147 10.311

P-value 0.000 0.428 0.000 0.006 0.032 0.000 v
< >

[ sTuDENTS.OUT =<

Structural Eguations A

SEPEER5=0.153*5E5 - 0.0830*HOME ATT + 0.180*APTITUDE + 0.307*SCHOOLATT, Errorvar.= 0.786

90% CILL(0.0341; (-0.215; (0.0603; (0.202; (0.€86;
50% CIUL 0.268) 0.0499) 0.295) 0.408) 0.861)
Standerr(0.0714) (0.0804) (0.0717) (0.0623) (0.0532)
Z-value 2.145 -1.033 2.514 4,932 14.789
P-value 0.032 0.302 0.012 0.000 0.000

WETHIC=0.245*SEPEERS + 0.0537*SE5 - 0.309*HOME ATT + 0.190*APTITUDE + 0.136*SCHOCLATT, Errorvar.= 0.645

90% CILL(0.133; (-0.058; (-0.440; (0.0734; (0.0308; (0.537;

90% CIUL 0.351) 0.164) -0.178) 0.301) 0.239) 0.740)

Standerr (0.066€5) (0.0677) (0.0797) (0.0695) (0.0635) (0.0625)

Z-value 3.689 0.793 -3.871 2.731 2.147 10.311

P-value 0.000 0.428 0.000 0.006 0.032 0.000 v
< >

Note that the confidence interval estimates for the standardized and completely standardized solutions are identical since
the variances of all the latent variables of the model are scaled to be equal to unity for both solutions. However, the
confidence interval estimates of the parameters of the measurement model of the standardized and completely standardized
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solutions differ since the variances of the observed variables are not scaled for the standardized solution but are scaled to
be equal to unity for the completely standardized solution.

3. Variance constraints for endogenous latent variables

3.1 Estimation
The general LISREL model for observed and latent variables

The general LISREL model (Jéreskog 1973, 1977) for population covariance matrices may be expressed as
y= Ayn +€
X=AE+0
n=Bn+IC+{

where y and X denote p, and p, indicators of them, endogenous latent variables, m, and them, exogenous latent
variables, &, respectively, A, and A,are p,xm, and p, xm, matrices of factor loadings, respectively, ¢ and & denote
p, and p, measurement errors, respectively, B and I' are m xm, and m, xm, matrices of regression weights,

respectively, and the elements of { denote m, error variables.

The tx1 vector, z, consisting of all the variables of the LISREL model follows as

y
X
n
z=|¢
€
)
4
The model for the relationships between all the variables of the LISREL model may then be expressed as
z=B,z+z,
where
00 A, O Ipy 0 0
00 0 A, O I, 0
00 B r 0 0 Im,,
B=loo o0 0 0 0 o0
00 0 0o o0 o0 o0
00 0 0o o o0 o
00 0 0o o o0 o
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where | denotes the nxn identity matrix and

0

0

0

z,=| &

£

)

g

The covariance matrix, ®,, of z_follows as

000 O0 O 0 0
000 0 O 0 0
000 0O O 0 O
® =000 @ 0 0 0
0000 O O, 0
0000 ©, 6O, 0
000 0 O 0 v

where @, @_, @, and ¥ denote the covariance matrices of &, €, 0, and §, respectively and @ ; = @, denotes the

covariance matrix between € and & . The txt covariance matrix of z, Y,, may then be expressed as
1 =0 ,
Yt:(lt—Bt) D, (It—Bt) = AP A

where A, =(I,—B,)". The (p+m)x(p+m) covariance matrix, Y, of the p= p, + p,observed variables and

m=m, +m, latent variables, follows as

r=[1,,, 0](1.-B) @ (L -B)"[1,, 0] =A®A

where A denotes the ( p+ m)xt matrix consisting of the first p+m rows of A,. The px p covariance matrix, X, of
the p observed variables may be expressed as

L=ADA|
where A jdenotes the pxt matrix consisting of the first p rows of A, .

In terms of the parameter matrices of the general LISREL model, we obtain that

X, X X

ZW yX yn yé

Y _ ny XX Xn ng
¢ =

ley Enx Zmz Ené

Eéy Zéx 2577 foé
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where

-1 ’ -1 * '
Eyy:Ay((I—B) r'or'(I-B) +‘I‘)Ay+®g

X, =X, =A0(1-B)" A, +0O,
L. =ADPA 1O,
x, = ((I _B)'TOr'(I-B)™ + \P*)A’y
%, =X =(I-B) TOA,
¥, =1-B)'TOr'(I-B)" +¥
X, =0r'(I-B) YA
X, =X, =0®A
X, =Z.=0r'(I-B)"
r.=®
where

¥ =(I-B)'YI-B)"

Variances of the latent variables

The covariance matrices of the P, endogenous latent variables, n, and the p. exogenous latent variables, &, are given by

¥, =(1-B)*'[Ior'+¥](I-B)"

and

respectively.

The variances of the exogenous latent variables are the diagonal elements of @ and are parameters of the LISREL model.
As a result, these variances can be fixed to unity to ensure that the corresponding factor loadings (elements of A, ) are

standardized.

The variances of the endogenous latent variables are the diagonal elements of X~ and are not parameters of the general

LISREL model. Instead, they are complex functions of the regression weights, variances and covariances of the exogenous
variables, and the regression error variances and covariances of the general LISREL model. As a result, equality constraints
are required to constrain the variances of the endogenous latent variables to unity to ensure that the corresponding factor
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loadings (elements of A ) are standardized. In the case of the general LISREL model, these constraints may be expressed
as

(Y], -1=0 Vi=12-m

n

Typical elements of the Jacobian matrix of these equality constraints (Mels 1988) follow as
[L], =2¢(6,)d;(6,)

where

[A].,p+i if 6, denotes a regression weight

-1 . . -
(1+ 9; ) [A] if 6, denotes a variance or covariance

L P+
and

[Y]_m if 6, denotes a regression weight

[A],,, if 6, denotes a variance or covariance

where i and j denote the row and column of the parameter of the general LISREL model, respectively, [A].j denotes the

j" column of the matrix A, and 0;; denotes the Kronecker delta.

Gauss-Newton algorithm

Suppose that the elements of O consist of the g unknown parameters of the general LISREL model and that f () denotes

the discrepancy function to be minimized with respect to the elements of 0 subject to the constraints that the variances of
the endogenous latent variables are equal to unity.

Let A denote the vector of Lagrange multipliers associated with the m, equality constraints for the variances of the

endogenous latent variables. If 0 and A denote the t" successive approximation to the estimators 0 and i
respectively, then the (t +1)* approximation (Browne and du Toit, 1992) is obtained from

F(tm} Fm} H(OY) L/(8Y)| | g(6Y)

- X2 % L(é(t)) 0 c(i“))

i(t+1)

where g(-) denotes the gradient vector of f(-), H(-) denotes the approximate Hessian matrix of f (-), L(-) denotes

the Jacobian matrix of the equality constraints for the variances of the endogenous latent variables with respect to the
elements of 0, and «, denotes a selected step-size parameter (Browne 1982) to ensure that

m,l m,]

f (9“+1>)+22\/1, (09)c, (V) < f (9“>)+2Z\A, (09)c, (6)

i=1 i=1
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with ¢, =1 in most cases. The maximum absolute residual cosine is the maximum absolute value of

g(ﬁ(t)) H(@(t)) Lr(@(t))
o(i®)| /(L) o

o) =12,
f(ﬁ ) Vi=12--,q+m,
i
Iteration is terminated when the maximum absolute residual cosine falls below the tolerance limit of &, =10~ and the

maximum absolute constraint falls below the tolerance limit of &, =10"° (Browne 1982). After convergence, estimated

standard errors of the estimators and the Lagrange multipliers are computed as the positive square roots of the diagonal
elements of the matrix

-1

L [H(9) (8
n-1 L(6Y) o
where n denotes the sample size.

If the data distribution of the continuous observed variables is assumed to be a multivariate Normal distribution, typical
elements of the gradient vector and the approximate Hessian matrix (Mels 1988) may be expressed as

[9], =—22'(6,)2b(6,)
and
[H], =2(a'(6)a(6)b'(6,)b(6) +a'(6,)b(6)b'(6,)a(8))
where
Q=V(S-A,®A,) VY

) -1
where S denotes the sample covariance matrix, V:{Z(O)} for maximum likelihood estimation, V =S for

generalized least squares estimation, and V =1 for unweighted least squares estimation and

V2 [Ap]j if 4, denotes a regression weight
a(6)= S : : :
(1+ aij) v [Ap]i if 6, denotes a variance or covariance
and
VY2 [Yp].j if 6, denotes a regression weight
b(Hk ) -

V2 [Ap} i 6, denotes a variance or covariance
-J

where A jand Y containthefirst p rows of Aand Y, respectively, i and j denote the row and column of the parameter
of the general LISREL model, respectively, [A].j denotes the jth column of the matrix A, and 6ij denotes the Kronecker

delta.
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If the data distribution of the continuous observed variables is a multivariate distribution with finite eight-order moments,
the gradient vector, and the approximate Hessian matrix (Browne 1982, 1984) of the weighted least squares (distribution
free) discrepancy function

!

f(0)=(s-0(6)) W(s-o(6))
are given by
9(0)=-AW"(s-0(0))
and
H(8) =AW~ A
where s denotes the px (p+1)/2x1 vector consisting of the nonduplicated elements of the sample covariance matrix S,

0(0) denotes the px(p+1)/2x1 vector consisting of the nonduplicated elements of the general LISREL model for the

population covariance matrix, W is a weight matrix with typical elements (Browne 1984) given by

W,

i =W

ijkl _WijWk|

A is the Jacobian matrix of ¢ () with respect to 0, and

Wi Z%Zn:(xim _Yi)(xjm _Yj)(ka _Yk)(xlm _YI)

where

3.2 MIMIC model for peer influences on ambition

The data are scores for the occupational aspiration, the educational aspiration, the intelligence, the socio-economic status,
and the parental aspiration of 329 students and their best friends at a Michigan high school used in a study by Duncan,
Haller, and Portes (1971). The corresponding data file is PEERS.LSF, and the first few observations are depicted below.

[ PEERS.LSF [ x|
REINTGCE | REFARASP | RESOCIEC REOCCASF| REEDASF | BFINTGCE | BFFARASFP | BFSOCIEC |BFOCCASP

1 -0.191 1.338 0.108 0.764 0.696 1.162 0.199 -0.536 8

2 -0.503 0.409 -1.018 0.004 -0.492 0.392 0.648 1159 |
3 -0.349 -1.425 -0.794 0724 -0.151 1.008 -2476 0.124
4 1.249 0.356 -0.436 0.01 -0.923 -0.395 -1.509 -1.252
5 0.673 -1.394 0.697 1.094 -0.101 -0.353 0.523 1.522
6 0.857 0.780 0.104 -0.553 -1.191 -0.601 0.033 -0.458
7 -0.234 -0.508 -1.240 -1.268 0.302 0.047 -1.796 0.944
] -1.236 1.250 -0.955 -0.418 -0.041 -0.490 0.378 -0.229
9 -0.948 -0.569 0243 0.257 0.999 -0.020 -0.040 0.351

10 , -0.607 1.740 1.038 -0.128 1.070 -0619 1.192 1.266 «
P »
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The theoretical model is a Multiple Indicators, Multiple Causes (MIMIC) model that suggests that the respondent’s parental
aspiration, intelligence, and socio-economic status along with the best friend’s socio-economic status are causes of the
respondent’s ambition and that the best friend’s parental aspiration, intelligence, and socio-economic status along with the
respondent’s socio-economic status are causes of the best friend’s ambition. A path diagram for this model is shown in the
image below.

REINTGCE
REOCCASP
REPARASP
REEDASP
RESOCIEC

BFINTGCE <§%%%%EED BEOCCASP

BFPARASP

BFEDASP

BFSOCIEC

The SIMPLIS syntax file to fit the theoretical model above to the student data is shown in the image below.

Bl Peers spL E=mrEE <

Raw Data from File PEERS.LSF A
Latent Variables

Reambitn Bfambitn

Relationships

RECCCASP EEEDASP Reambitn

BFOCCLSP BFEDASP = Bfambitn

Reambitn = Bfambitn REPARASP REINTGCE RESOCIEC BFSOCIEC
BEfambitn = Reambitn RESCCIEC BFSOCIEC BFINTGCE BFPARASP
Options: SO sC

Path Diagram

End of Problem v

e Line 1 specifies the data file.

e Lines 2 to 3 specify the labels for the latent variables of the model.

e Lines 4 to 8 specify the theoretical model.

e Line 9 requests that all the factor loadings for the two endogenous latent variables are estimated by constraining
their variances to be equal to unity (SO option) and the completely standardized solution (SC option).
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o Line 10 requests a path diagram of the model.
e Line 11 indicates that no more SIMPLIS commands are to be processed.

If this SPL file is opened in LISREL and the Run LISREL icon is clicked, the following path diagram is obtained.

1.20 |REINTGCE

0.22 REOCCASP
0.30
25 1.14 REPARASP 0.75
0.20
Reambitn
0.05 -
e REEDASP
29 1.06 |RESOCIEC
0.18 0.18
0.24 0.08
10 .07 |[BFINTGCE 0.u1 o ) - ArOCCASE
0.10 \\\_,//
0.22 0.19
0.85
31 1.04 |BFPARASP 0.28
BFEDASP

1.00 BFSOCIEC

Chi-Square=26.89, df=16, Pvalue=0.04269, RMSEA=0.046

.39

.34

.45

.33

The corresponding output file, PEERS.OUT, is opened in a separate window. The completely standardized estimates along
with the standard error estimates, the test statistic values, and the exceedance probabilities for the free parameters of the

measurement and structural models, which are listed in this file, are shown in the images below.
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[ PeERs OUT e
Multiple Indicators, Multiple Causes (MIMIC) model A
Completely Standardized Solution

Measurement Ecuations
REOCCASP=0.766*Reambitn, Errorvar.= 0.413
0% CILL(0.703; (0.329;
0% CIUL 0.817) 0.501)
Standerr (0.0345) (0.0529)
Z-value 22.214 7.804
P-value 0.000 0.000

REEDASP=0.814*Reambitn, Errorvar.= 0.338
90% CILL(0.752; (0.255;
0% CIUL 0.8&2) 0.431)
Standerr(0.0332) (0.0540)
Z-value 24.523 ©.249
P-value 0.000 0.000
BFOCCASP=0.772*Bfambitn, Errorvar.= 0.404
0% CILL(0.715; (0.328;
0% CIUL 0.818) 0.485)
Standerr(0.0312) (0.0482)
Z-value 24.747 B.389
P-value 0.000 0.000
BFEDASP=0.828*Bfambitn, Errorvar.= 0.314
90% CILL(0.774; (0.240;
90% CIUL 0.871) 0.398)
Standerr (0.0291) (0.0482)
Z-value 28.487 6.511
P-value 0.000 0.000 v
< >

[ peers.out ] B

Structural Eguations A

Reambitn=0.175*Bfambitn + 0.332*REINTGCE + 0.214*REPRRASP + 0.2%0*RESOCIEC + 0.103*BFSOCIEC, Errorvar.= 0.47%
90% CILL(0.0310; (0.245; (0.132; (0.199; (0.00175; (0.390;
0% CIUL 0.313) 0.414) 0.293) 0.376) 0.202) 0.570)
Standerr (0.0862) (0.0514) (0.0490) (0.0538) (0.0612) (0.0555)
z-value 2.035 6.465 4.363 5.386 1.685 5.640
P-value 0.042 0.000 0.000 0.000 0.092 0.000

Bfambitn=0.184*Reambitn + 0.0867*RESCCIEC + 0.428*BFINTGCE + 0.1%7*BFPARASP + 0.282%BFSOCIEC, Errorvar.= 0.384

90% CILL(0.0528; (-0.005; (0.3486; (0.120; (0.198; (0.305;

90% CIUL 0.309) 0.177) 0.503) 0.272) 0.363) 0.470)

Standerr (0.0783) (0.0558) (0.0475) (0.0461) (0.0502) (0.0506)

Z-value 2.350 1.553 8.985 4.272 5.620 7.591

P-value 0.019 0.120 0.000 0.000 0.000 0.000
< >

These results agree with those obtained by fitting the theoretical model correctly to the sample correlation matrix using the
special statistical methods implemented in Steiger (1995) and Browne and Mels (1996).
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4. Models for mean vectors and covariance matrices
4.1 Estimation

The extended LISREL model for observed and latent variables

The extended LISREL model (Sérbom 1981) for population mean vectors and population covariance matrices may be
expressed as

y=1,+An+e&
X=1,+AE+0
n=0+Bn+I¢+{

where y and x denote p, and p, indicators of the m, endogenous latent variables, n, and the m, exogenous latent
variables, &, respectively, T, and T, are p,x1 and p, x1 vectors of measurement intercepts, respectively, A and A,
are p,xm,_ and p,xm, matrices of factor loadings, respectively, &€ and & denote p, and p, measurement errors,
respectively, @ isa m, x1 vector of regression intercepts, B and I' are m xm, and m, xm, matrices of regression

weights, respectively, and the elements of { denote m, error variables.

The tx1 vector, z, consisting of all the variables of the extended LISREL model follows as

y

N
Il
S M gw = X

S
The model for the relationships between all the variables of the extended LISREL model may then be expressed as

zZ=0,+Bz+z,

where
Ty
TX
a
a=| 0
0
0
0
and

53



00 A 0 I 0 0
00 0 A, 0 I 0
co B T o0 0 I
B.=loo o0 0o 0 0 o
00 0 0O 0 0 O
00 0 0 0 0 O
00 0 0o 0 0 O
where | denotes the nxn identity matrix and

0

0

0

z,=| &

£

)

S

The mean vector, k,, of z_is given by

0

0

0

K, =| K

0

0

0

The mean vector, p,, of z, follows as
1 :(It _Bt)il(at +Kt): Ay (ut +Kt)

where A, = (I, —B,) . The covariance matrix, @, , of z, follows as

0000 0O 0 O
0000 0O 0 O
0000 O 0 O
®={000® 0 0 0
0000 © ©, 0
0000 ©, © 0
0000 0O 0 ¥
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where @, ©_, O,, and ¥ denote the covariance matrices of &, €, 9, and {, respectively and @ ; = @', denotes the
covariance matrix between ¢ and & . The txt covariance matrix of z, Y,, may then be expressed as
—1 _1 ,
Y, =(1,-B,) @I, —Bt) = A DA

The (p+m)x(p+m) covariance matrix, Y, of the p=p, + p,observed variables and m=m, +m. latent variables,
follows as

r=[1,,, 0](1.-B) @ (L -B)"[1,, 0] =A®A

where A denotes the (p+m)xt matrix consisting of the first p+m rows of A,. The px1 mean vector, p, and the

px p covariance matrix, X, of the p observed variables may be expressed as

n= Apllt
and
Y= Aptl)tA'p

where A ; denotes the pxt matrix consisting of the first p rows of A, .

Gauss-Newton algorithm

Suppose that the elements of @ consist of the g unknown parameters of the extended LISREL model and that f () denotes

the discrepancy function to be minimized with respect to the elements of 0 . If 0© denotes the t" successive approximation
to the estimators 0 , then the (t +1)* approximation (Browne and du Toit, 1992) is obtained from

6 =69 — a1 (6)g(6)

where g(-) denotes the gradient vector of f (-), H(-) denotes the approximate Hessian matrix of f(-), and ¢, denotes

a selected step-size parameter (Browne and du Toit 1992) to ensure that f (0(”1))< f (9(‘)) with o, =1 in most cases.

The maximum absolute residual cosine is the maximum absolute value of

[g(é(t))l/\/[H(ﬁ(‘))li f(é(t)) Vi=12q

Iteration is terminated when the maximum absolute residual cosine falls below the tolerance limit of &, =10~ (Browne

and du Toit 1992). After convergence, estimated standard errors of the estimators are computed as the positive square roots

of the diagonal elements of the matrix il H™ (ﬁ(t)) where n denotes the sample size.
n _

If the data distribution of the continuous observed variables is assumed to be a multivariate Normal distribution, typical
elements of the gradient vector and the approximate Hessian matrix may be expressed as

[9], =—2(a'b(8,)+c(6,)d(6,))
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and
[H], =2(b'(6,)b(8) +¢'(6,)c(8)d'(6,)d(8)) +¢'(6,)d(6,)d'(6,)c(6))
where
a=V(x-An,)
and

Q=V"(S-A, @A)V

~\) -1
where X and S denote the sample mean vector and sample covariance matrix, respectively, V = {E(G)} for maximum

likelihood estimation, VV =S for generalized least squares estimation, and V=1, for unweighted least squares
estimation and

VH#[A, ] if 9, denotes an intercept
b(6,)=1V**[A,] [Ap]j_ o, if 6 denotes a regression weight
0 if 6, denotes a variance or covariance
and
0 if 6, denotes an intercept
c(8,)= VH#IA, ] if 9, denotes a regression weight
(1+0; )_1 V#[A, ] if 6, denotes a variance or covariance
and

0 if 6, denotes an intercept
d(g,)=1V™" [Yp]_j if 4, denotes a regression weight

V*?[A,] if 6, denotes avariance or covariance
-]

where Ap and Yp contain the first p rows of A and Y, respectively, i and j denote the row and column of the
parameter of the extended LISREL model, respectively, [A]i_ denotes the i" row of the matrix A, [A].j denotes the jth

column of the matrix A, and 6ij denotes the Kronecker delta.

If the data distribution of the continuous observed variables is a multivariate distribution with finite eight-order moments,
the gradient vector, and the approximate Hessian matrix (Browne and du Toit 1992) of the weighted least squares
(distribution free) discrepancy function

£(0)=(x-n(0)) =* (X1 (0))+(s~o(0))

!

W (so(0))
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are given by
9(0)= A, (X1 (0))~A, W (s-0(0))
and
H(0)=A"Z7A, +A] WA,
where W is a weight matrix with typical elements (Browne 1984) given by

W,

ik = Wia — Wi Wy

A, is the Jacobian matrix of ju(0) with respectto 6, A is the Jacobian matrix of &(0) with respect to 8, and

Wi Z%Z(Xim _Yi)(xjm _Yj)(ka _Yk)(xlm _YI)

where

Multiple groups

Suppose that the elements of @ consist of the g unknown parameters of the extended LISREL model for G independent
populations. In this case, the discrepancy function to be minimized with respect to the elements of 8 may be expressed as

[2Y

n_

f(0)=Y 1, (6)

g1 N—

®

where n, denotes the sample size for population g, n denotes the total sample size, and fg () denotes the discrepancy

function for population g .

The gradient vector and approximate Hessian matrix follow as

0(0)=. 15, (0
and
H(O)=2 0, (0)

where g, (-) and H(-) denote the gradient vector and approximate Hessian matrix of f_(-).
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4.2 Measurement model with intercepts using student data

The data are the complete simulated scores of 815 students on six psychological tests (visual perception, cubes, lozenges,
paragraph completion, sentence completion, and word meaning) along with the gender of the students. The corresponding

data file is GENDERC.LSF, and the first few observations are shown below.

[..JGENDERCLSF = e
visperc cubes lozenges Gender paragraf sentenc | wordmean
1 -6.45 -8.07 -252 1.00 054 1.25 9.17 I
2 8.83 -3.73 11.51 1.00 246 289 931 |
3 -3.68 -3.84 557 1.00 555 762 10.74
1 -6.29 1.97 -17.09 1.00 3.20 -0.97 8.66
5 2.15 -4.17 4.80 1.00 453 259 5.69
6 -8.64 -4.84 -9.55 1.00 273 148 3.89
7 -8.02 1.18 -7.44 1.00 -3.75 -6.72 -6.29
8 11.14 -5.34 6.93 1.00 -1.35 -0.32 -3.71
9 12.67 0.67 8.08 1.00 -1.64 571 -6.32
10 -3.69 -3.62 -19.14 1.00 -1.86 0.12 -2.94
11 -5.36 12.27 1.69 1.00 -4.93 -4.75 -11.62
12 3.60 -3 1.99 1.00 -1.25 -0.70 9.58
13 -3.54 1.12 -12.50 1.00 -6.98 -7.67 -16.31
14 6.55 1.40 9.23 1.00 0.05 -0.28 1.77
15 19.37 6.27 16.81 1.00 162 553 1589 «

The theoretical model is a measurement model with intercepts that specifies that the six psychological tests are indicators
of visual ability and verbal ability of Junior High students. A path diagram for this model is depicted in the image below.

visperc

cubes

lozenges

paragraf

sentenc

wordmean

The SIMPLIS syntax file to assess the configural invariance of the measurement model above with intercepts for gender is

shown in the image below.
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Bl GENDERCMS.SPL =SnEs X

Group Boys A
SGROUPS = Gender

Raw Data from File GENDERC.LSF

Latent Variables: Visualkbility Verbalzbility
Relationships

visperc = CONST 1*Visualzbility

cubes lozenges = CONST VisualZbility

paragraf = CONST 1*Verbalkbility

sentenc wordmean = CONST VerbalZbility

Group Girls

Raw Data from File GENDERC.LSF

Latent Variables: Visualkbility Verbalzbility
Relationships

visperc = CONST 1*Visualzbility

cubes lozenges = CONST VisualZbility

paragraf = CONST 1*Verbalkbility

sentenc wordmean = CONST VerbalZbility

Set the Variance of VisualzZbility Free

Set the Variance of VerbalRbility Free

Set the Covariance of VisualZbility and VerballZbility Free
Set the Error Variance of visperc - wordmean Free

Options: GN

Path Diagram

End of Problem v

o Line 1 specifies the label for the first group.

e Line 2 specifies the grouping variable.

e Line 3 specifies the data file.

o Line 4 specifies the labels for the latent variables of the model.

e Lines 5 to 9 specify the theoretical model for the first group.

e Line 10 specifies the label for the second group.

e Line 11 specifies the data file.

e Line 12 specifies the labels for the latent variables of the model.

e Lines 13 to 21 specify the theoretical model for group 2.

e Line 22 requests the Gauss-Newton algorithm instead of the Fletcher-Powell algorithm for parameter estimation.
e Line 23 requests a path diagram of the model.

e Line 24 indicates that no more SIMPLIS commands are to be processed.

If this SPL file is opened in LISREL and the Run LISREL icon is clicked, the following path diagram is obtained.
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32.97

16.90

29.24

17.04

visperc

cubes

0.47 g
isualAb
o 14.92
ility

lozenges

paragraf| 1.00 @ 7.49
ility

sentenc 2.40

wordmean

Chi-Syuare=12.40, df=16, Pvalue=0.71592, RMSEA=0.000

The Chi-square results above imply that the configural invariance of the measurement model with intercepts for boys and
girls is supported by the data. The corresponding output file, GENDERCMS.OUT, is opened in a separate window. The
estimated measurement equations for boys and girls, which are listed in this file, are shown in the images below.
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[T GENDERCMS.OUT = e S
Group Boys A
Measurement Equations
visperc=0.530 + 1.000*VisualRbility, Errorvar.= 32.972, R%=0.311
90% CILL(-0.090; (28.251;
90% CIUL 1.150) 38.482)
Standerr (0.377) (3.088)
Z-value 1.405 10.644
P-valus 0.160 0.000
cubes= - 0.0773 + 0.473%Visualability, Errorvar.= 16.89%9, R?=0.165
90% CILL (-0.4580; (0.336; (14.739;
%0% CIUL 0.328) 0.€10) 19.374)
Standerr (0.245) (0.0835) (1.405)
Z-value -0.315 5.668 12.031
P-value 0.752 0.000 0.000
lozenges= - 0.233 + 1.726*Visualkbility, Errorvar.= 29.241, R?=0.603
90% CILL (-1.002; (1.349; (21.669;
90% CIUL 0.536) 2.103) 39%.457)
Standerr (0.4868) (0.229) (5.327)
Z-value -0.48% 7.531 5.489
P-value 0.618 0.000 0.000
paragraf=0.103 + 1.000*Verbalkbility, Errorvar.= 2.662 , R?=0.738
90% CILL(-0.182; (2.150;
90% CIUL 0.389) 3.295)
Standerr (0.174) (0.345)
Z-value 0.596 7.710
P-value 0.531 0.000
sentenc= - 0.0607 + 1.241*Verbalfbility, Errorvar.= £.468 , R?=0.641
%0% CILL (-0.441; (1.11%8; (5.459;
90% CIUL 0.320) 1.364) 7.663)
Standerr (0.231) (0.0747) (0.667)
Z-value -0.263 16.621 9.701
P-value 0.793 0.000 0.000
wordmean=0.305 + 2.396*Verbalkbility, Errorvar.= 17.044, R*=0.71¢%
90% CILL(-0.389; (2.172; (13.954;
90% CIUL 0.999) 2.619) 20.818)
Standerr (0.422) (0.136) (2.072)
E-value 0.722 17.60%9 B.225
P-value 0.470 0.000 0.000 N
< >
[ GENDERCMS.OUT E=0EEE X%
Group Girls ~
Measurement Equations
visperc=0.261 + 1.000*VisualZbility, Errorvar.= 26.526, R2=0.438
%0% CILL(-0.256; (22.986%;
%0% CIUL 0.778) 30.608)
Standerr (0.314) (2.308)
Z-value 0.830 11.492
P-value 0.406 0.000
cubes=0.0515 + 0.632*Visualability, Errorvar.= 12.587, R?=0.38%7
90% CILL(-0.292; (0.535; (10.999;
90% CIUL 0.395) 0.730) 14.404)
Standerr(0.209) (0.03%2) (1.032)
Z-value 0.24% 10.688 12.197
P-value 0.805 0.000 0.000
lozenges= — 0.146 + 1.339%9*VisualBbility, Errorvar.= 21.865, R?=0.629
%0% CILL (-0.724; (1.145; (17.480;
%0% CIUL 0.432) 1.533) 27.351)
Standerr (0.351) (0.118) (2.975)
EZ-value -0.415 11.354 7.349
P-value 0.€78 0.000 0.000
paragraf=0.150 + 1.000*Verbalability, Errorvar.= 2.99%9% , R?=0.762
%0% CILL(-0.118; (2.502;
90% CIUL 0.417) 3.595)
Standerr(0.162) (0.331)
Z-value 0.920 9.073
P-value 0.357 0.000
sentenc=0.0866 + 1.321*Verbalibility, Errorvar.= 5.011 , R?=0.677
90% CILL(-0.288; (1.220; (6.934;
%0% CIUL 0.461) 1.422) 9.256)
Standerr (0.228) (0.0613) (0.703)
EZ-value 0.380 21.564 11.391
P-value 0.704 0.000 0.000
wordmean=0.594 + 2.364*Verbalability, Errorvar.= 17.723, R®=0.752
90% CILL(-0.042; (2.194; (14.876;
90% CIUL 1.230) 2.535) 21.115)
Standerr(0.387) (0.103) (1.887)
Z-value 1.33¢ 22.870 9.392
P-value 0.125 0.000 0.000 i
< >
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